
P AA142 394 A NUMERICAL ALGORITHM FOR CHAINED AGGREGATION AND

MODIFIED CHAINED AGGREGATIONIU) ILLINOIS UNIV AT URBANA
DECISION AND CONTROL LAB H S THARP SEP 83 DC-62

UNCLASSIFIED NOD014-79-C-0424 FIG 12/1 NL

IIII..II...
MonI.E
fEl.Illl

1! 1.0 I
I12 I~

11111 ~*1.8

/111.2 F lii 11(1,,N I T

IREPORT DC-62 SEPTEMBER 1983

I ~ 1 COORDIAATED SCIENCE LABORATORY

I DECISION AND CONTROL LABO9RATORY

cv,

A NUMERICAL ALGORITHM FOR
* CHAINED AGGREGATION AND

c~MODIFIED CHAINED AGGREGATION

U

UNVRIYOILIOS TUBN.-HMAG
840I21 1

UNCLASSIFIED
SECUSITY CLASSIFICATION OF THIS PAGE ("onea, Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
REPORTDOCUMENTATIONPAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCEISSiON NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Technical Report
A NUMERICAL ALGORITHM FOR CHAINED AGGREGATION

AND MODIFIED CHAINED AGGREGATION 6. PERFORMING ORG. REPORT NUMBER
R-996(DC-62) ;UILU-ENG-83-2217

7. AUTHOR(s) 6. CONTRACT OR GRANT NUMIER(a)

Hal Stanley Tharp N00014-79-C-0424;

NSF ECS 82-17631

9. PERFORMING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK

Coordinated Science Laboratory AREA A WORK U.tT'UMOERS

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

II. CONTROLLING OFICE NAME AND ADDRESS 12. REPORT DATE

Joint Services Electronics Program September 1983

National Science Foundation 13. NUMBEROF PAGES

86
14. MONITORING AGENCY NAME & AODRESS(II different from Controllina Office) IS. SECURITY CLASS. (ol this report)

UNCLASSIFIED
1Sa. 0ECLASSIFICATION. DOWNGRADING

SCHEDULE

16. OISTHIeUTION STATEMENT (of thiA Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

?a. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reverse aide It neceaiery and identify by block number)

Chained aggregation Large space structure
Generalized Hessenberg Representation Output feedback
Modified chained aggregation Reduced-order model
Orthogonal matrices
Singular value decomposition

20 ABSTRACT (Continue on re'era. aid* It necessery end identify by block number)

.-A computer implepentation of chained aggregation and modified chained
aggregation using orthogonal transformations is presented. The numerical
advantages associated with orthogonal matrices are highlighted. The developed
algorithm is then employed to identify a reduced-order model of a large space
structure. With the reduced-order model, an output feedback design is carried
out. The design is shown to produce an acceptable result on the full order
model.

DDFomm, 1473
DO I JAN 43UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE When Date Entered)

A NUMERICAL ALGORITHM FOR CHAINED AGGREGATION
AND MODIFIED CHAINED AGGREGATION

BY

HAL STANLEY THARP

B.S., University of Missouri-Rolla, 1981

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1983

N-,

Thesis Advisor: Professor William R. Perkins ju-

Urbana, Illinois

Dist

A--7

iiiI
ACKNOWLEDGEMENTS

The author would like to thank his advisor Professor W. R. Perkins

for the many helpful discussions and suggestions during the course of

this work. Thanks are also extended to Professor D. K. Lindner whose

Iinsight and comments provided the stimulus to complete the development

of the algorithm.

I
iv

j I
TABLE OF CONTENTS

CHAPTER Page

1. INTRODUCTION ... 1

2. SINGULAR VALUE DECOMPOSITION AND THE CHAINED

AGGREGATION ALGORITHM 4

2.1. Introduction 4
2.2. Singular Value Decomposition and Its Properties .. 5
2.3. The Chained Aggregation Algorithm 11

2.3.1. Algorithm 12

2.4. Observability and Controllability Tests 16

3. MODIFIED CHAINED AGGREGATION 19

3.1; Introduction 19
3.2. Identifying The Input Structure 20
3.3. The Modified Chained Aggregation Algorithm 23

4. OUTPUT FEEDBACK DESIGN USING THE CHAINED AGGREGATION
ALGORITHM .. 27

4.1. Introduction 27
4.2. Introduction of the General Large Space

Structure Problem 27
4.3. A Physical Problem Description 30
4.4. The Design Procedure 32

5. CONCLUSION ... 44

APPENDIX A: SUPPORTING SOFTWARE 45

APPENDIX B: NUMERICAL VALUES ASSOCIATED WITH THE
LARGE SPACE STRUCTURE 53

APPENDIX C: PROGRAM LISTING 78

REFERENCES .. 119

I
I

LIST OF TABLESI
Table Page

4.1 Nominal and Perturbed System Eigenvalues 33

4.2 Nominal and Perturbed Subsystem Eigenvalues 34

4.3 Canonical Angles Between U and V For
The Nominal and Perturbed Systems 37

B.1 Mass Matrix for the Nominal System 54

B.2 Stiffness Matrix for the Nominal System 55

B.3 The BF Matrix ... 56

B.4 The C Matrix ... 57
v

B.5 Mass Matrix for the Perturbed System 58

B.6 Stiffness Matrix for the Perturbed System 59

B.7 A Matrix for the Nominal System 60

B.8 I Matrix for the Perturbed System 61

B.9 Relationship Between the Coordinates and the Nodes 62

B.10 Transformation matrix which generates Eq. (4.4.1) 63

B.11 Nominal reduced-order system matrix 66

B.12 Input matrix for the nominal reduced-order model 68

B.13 Output matrix for the nominal reduced-order model 69

B.14 Perturbed reduced-order system matrix 70

B.15 Input matrix for the perturbed reduced-order model 72

B.16 Output matrix for the perturbed reduced-order model 73

B.17 Transformation used during the design of the feedback
matrix K 74

B.18 State weighting matrix Q 76

B.19 Input weighting matrix R 77

B.20 Output feedback gain matrix K 77

7

vi

LIST OF FIGURES

Figure Page

2.1 The Four Fundamental Subspaces 8

4.1 Draper Tetrahedral Truss 31

4.2 Trajectories for the nominal reduced-order model 40

4.3 Trajectories for the perturbed reduced-order model 41

4.4 Trajectories for the nominal full-order model 42

4.5 Trajectories for the perturbed full-order model 43

i7

1J

CHAPTER 1

INTRODUCTION

The chained aggregation procedure was first introduced in [1] in the

context of reduced-order modelling of large-scale systems. The chained

aggregation procedure transforms the original system into the Generalized

Hessenberg Representation (GHR). Once placed in the GHR, the reduced-order

modelling analysis is carried out.

Since the introduction of the chained aggregation procedure, much more

research has been done [2,3.4,5]. The work that has followed has not been

constrained to the reduced-order modelling problem. But, it has expanded

the possible applications of the chained aggregation procedure to include

many control system problems. For a thorough discussion of chained

aggregation and the GHR for control system design, the author recommends

consulting [6], where this issue has been specifically addressed in a

geometric setting.

The algorithm developed in this thesis uses the numerical advantages

associated with orthogonal matrices to implement the basic chained

aggregation procedure. Included in the algorithm is an enhanced procedure,

called modified chained aggregation (MCA), which has been introduced in

earlier literature [2,6,71. Several numerical advantages of orthogonal

matrices are included herein; more discussion may be found in

[8,9,10,11.12].

k __ 7

2

The orthogonal matrices are obtained during the algorithm by using the

singular value decomposition (SVD) of particular matrices. Briefly, the SVD

is used to identify the linearly independent and linearly dependent rows and

columns of the particular matrix. With the identification, the

decomposition generates orthonormal vectors spanning the subspaces

associated with the above sets of rows and columns. These orthonormal

vectors may then be judiciously grouped to form orthogonal matrices to be

used within the algorithm.

The organization of this thesis is as follows. Chapter 2 presents the

SVD and steps through the chained aggregation algorithm showing how SVD has

been incorporated. The development of the modified chained aggregation

algorithm is contained in Chapter 3. The chained aggregation algorithm is

used in Chapter 4 to help in the design of an output feedback controller for

a particular large flexible space structure. Chapter 5 presents the

conclusion.

A summary of definitions and the notation used throughout this thesis

follow. Given a subspace S, denoted by bold, capital roman letters, its

orthogonal complement will be represented by S . The range space and the

null space of a matrix will be denoted by R[.] and N[.], respectively. At

is used to represent the pseudo-inverse of the matrix A. The transpose of a

matrix A will be denoted by AT. The set of all mxn matrices of rank r with

coefficients in the real number field, R. will be denoted by Rmxn. Ther

working precision of the computer will be represented by e. On a given

computer, the value of a equals the smallest number which when added to one

equals one. The singular values of a matrix will be denoted by ai. The

matrix norms 1'[12 and II.it F correspond to the matrix 2-norm and the

7l

matrix Frobenius norm, respectively. If A e Raln , then

hAIl2 = maximize IyTA•I
12 = II•112=1 lI12 Y

where

n

lxl12 2)1/2 (xTx)1/2

i=1

X = (I, 2 . .n)T

m n

IIAIIF (Z ,;)1/2

i=1 j=1

The dimension of a vector space will be denoted by d(.). The notation

sp 0 ~

represents the vector space spanned by the non-zero elements of the columns

of X as they vary over the real numbers. The rank of a matrix will be

denoted by p[.].

4

CHAPTER 2

SINGULAR VALUE DECOMPOSITION AND THE CHAINED AGGREGATION ALGORITHM

2.1. Introduction

Chained aggregation as introduced in [11 identifies the information

structure of the system by aggregating the system with respect to the

output. Once aggregated, the system exhibits the Generalized Hessenberg

Representation (GHR) structure which has been shown to st . te many

possible design procedures [1,2,3,4,5,6].

A design procedure used in this thesis is model reduct ur Model

reduction arises out of the simple interconnecting structure displayed in

the GHR and by identifying the feedback coupling between subsystems which is

weak or nonexistent. The resulting model retains the strongly observable

modes from the outputs rather than retaining the dominant system modes as in

modal reduction. Throughout the following discussion the subsystem composed

of the strongly observable modes will be referred to as the aggregate

subsystem, while the residual subsystem will refer to the remaining

subsystem.

Associated with the chained aggregation procedure are many state space

transformations. It is shown below these transformations can be performed

using orthogonal matrices which are numerically robust, in contrast to the

nonorthogonal transformations described in most of the previous literature

[1,2,3,4,7].

l7

5

The following section reviews the singulo value decomposition (SVD)

along with some of it properties. The SVD is then incorporated into the

sters of the chained aggregation algorithm as shown in Section 3. Section 4

highlights a consequence of the chained aggregation algorithm, its ability

to check the observability and controllability of a system.

2.2. Singular Value Decomposition and Its Properties

The SVD will be introduced by the following theorem.

Theorem 2.2.1[8]: Let A C Rm x u . Then there exist orthogonal matrices
r

U e Rm x m and V E Ra x n such that

A = U VT (2.2.1)

where

S

and S = diag(,1 ,0 2 . with l ... 0r>O.

Proof: See [8].

The product U T VT is the singular value decomposition of the A matrix.

The numbers a Io2 r together with 0 r+l= ...=an=0 are called the singular

values of A and are the positive square roots of the eigenvalues of ATA.

The following well-known properties of SVD make it useful in the

chained aggregation algorithm.

6

Two different matrix norms associated with 0i,...,an can easily be

defined:

IIAII 2 = Cy

IIAIIF = + .. + a2)1/2

Our main interest in singular values will be for rank determination.

Thus, knowing that the singular values are not very sensitive to

perturbations in the matrix insures a good rank determination. The change in

the singular values are known to be bounded by the magnitude of the matrix

perturbation.

Theorem 2.2.2[111: Let A,B e Rmxn have singular values a, . and

'1 "'" Tnz respectively. Then

10i - viI j II A - B 112 (i = 1,2,...,n).

Proof: See [11].

The concern over matrix perturbations is related to the fact that infinite

precision arithmetic cannot be performed on a computer. For this reason,

when the singular values of a matrix A are desired, the computed singular

values are actually the exact singular values of a matrix slightly perturbed

from A, say A + E. A more extensive discussion can be found in [8,10].

To determine the rank of a matrix, all of its singular values are

compared with y = e.-IAII, where the particular norm used can be selected by

L .. I I _____..

7

the user; the number of ci's greater than I determines the rank [10].

Looked at in this way, the smallest singular value, ar, greater that y gives

a measure as to how far away the A matrix is from another matrix of smaller

rank.

Another important outcome of SVD is the identification of the four

fundamental subspaces [9] of a matrix. Suppose F e Rm x n has an SVD given byr

F u VT S~PJ] 0] [;]1 (2.2.2)F = 2] 0g 0 V

where S = diag(o1 r) with a1 . r > 0 and U and V are partitioned

compatably, i.e., U1 e Rm xr, V1 C R
n"r, etc. With this notation U1 , U2 and

V1 , V2 produce orthonormal bases for the four fundamental subspaces, R[F],

I [F], N [F], N[F] [8]. Figure 2.1 redrawn from [8] relates these

subspaces.

Associated with the matrix F e Rm xn are two different vector spaces, Rm

and Rn. Figure 2.1 illustrates how the F matrix can induce direct sum

decompositions of these two vector spaces. In Rn the columns of V2 form an

orthogonal basis for the N[F] while the columns of V1 span the remainder of

Rn with an orthogonal basis. Similarly, the columns of U1 form an

orthogonal basis for the R[F] in Rm while the columns of U2 span the

remainder of m with an orthogonal basis. The mappings between these

subspaces is also indicated. The F matrix maps the space spanned by V1 into

the R3F], i.e., the space spanned by U1. The pseudo-inverse of F performs a

map in the opposite direction. The space spanned by the columns of V2 is

mapped into the origin in Rm by the F matrix. The space spanned by the

F

REV (NF l F

Rn R

Figure 2.1: The Four Fundamental Subspaces

9

columns of U2 is mapped into the origin in R
n by Fo

The pseudo-inverse of F can be obtained from the SVD of F

Ff = 1 - U (2.2.3)

where SO = (. .' G1 ""Gr > 0, and U and V are obtained

from (2.2.2).

In general, SVD is the only numerically reliable method of generating

basis for these subspaces, since U and V are partitioned into (U1 - U2] and

[V1 , V2], according to the smallest singular value [8].

Further discussion of Figure 2.1 will be postponed until after the

chained aggregation algorithm has been presented.

The advantage of using SVD within the chained aggregation algorithm

lies in the fact that the bases vectors generated by SVD are orthonormal.

Thus, constructing transformation matrices from these orthonormal vectors

results in orthogonal transformations. Several well-known numerical

advantages associated with orthogonal matrices useful in the chained

aggregation algorithm are:

(1) Orthogonal matrices are easy to invert, U-1 = UT .

(2) Orthogonal matrices are perfectly conditioned with respect to the

2-norm, IIAUII2 = IIAIl 2.

(3) Orthogonal matrices lend themselves to backward error analyses

[11]. For example, suppose an error F is introduced into the result of an

10

orthogonal transformation. Let E - UFUT. From the second characteristic

above

HEII 2 = llUUll2 - llFUT1 12 = lIF11 2

and

UT(A + E)U = UTAU + UTEU = UTAU + F.

In other words, a perturbation in the result can be accounted for by a

perturbation of the same magnitude in the original problem. This guarantees

that if there exists an uncertainty in the original A matrix of magnitude 8,

then the resulting transformed system will have an uncertainty of the same 6

magnitude.

(4) Orthogonal transformations only rotate the axes, each axis

maintaining its exact relation to the others throughout [12]. It should be

mentioned that not all orthogonal matrices represent pure rotations as can

be seen from a simple example. Consider the orthogonal matrix

This matrix reflects every point (x,y) into its mirror image (y,x) across

the 45 line y = x, which is not a true rotation.

In [1] orthogoal matrices have not been used for the transformation

matrices and consequently the matrices used can be very ill conditioned and

result in a numerically unstable algorithm.

32. TI Chainod Axsreastion Alzorith-

The chained aggregation algorithm transforms any given system of the

form

x - Ax + Bu (2.3.1a)

y = Ci , (2.3.1b)

where A e Raxn, B e R"', and C e Rr lxn into the GHR using only the

information structure of the system. The GHR is given by

z Fz + Gu (2.3.2a)

y = Dz , (2.3.2b)

where

12

12

F1 1 F 12 0 . . . 0 0

F21 F22 F 23 0 . . . 0 0

F F - j Fj2 ... F Fjj+1 0 . . . 0

Fk-2, 1 Fk-2,2 Fk-2,k-l 0

Fk-l,l Fk-,2 Fk-l,k- Fk-l,k

Fk.1 Fk,2 Fk,k-1 Fk k

G1 D = [D1 0 ... 01
G
2

Gk

k
r ixri

rlxrl
with F i R r ri+, n, and D 1 e R . The following

1=

steps comprise the chained aggregation algorithm.

2.j.l. Algoritha

Let A e Rnxn, B e R n.., and C e R with C having full row rank.

Initializatio: Al 1 A. C - C, = 0, p - n, y a blair , and i = 1.

13

Stj. 1: Perform a column compression [10] on the C matrix by using SVD. The

linearly independent columns of C will be compressed to the left by post

multiplying C by the V matrix resulting from SVD. If Vi -V . V2] with

1 e R l nx (n-r 1)
and V1 e R , then

C = Ui Yi viT

results in

cvi = C[V1VI11 - (D 0

Ste 2: Initialize the transformation matrix

Ti = viT .

Step 3: Perform a state space transformation on the Ai matrix. This

transformation can be broken down into four smaller and separate

transformations. Since at most only two of the four smaller transformations

are needed, this allows for fewer calculations during the execution of the

algorithm.

riT-i, iTAivi "I

viTAiv i vi

iiTTiii ViTAivi

LV2 AV 1 -2 2

Let p = p - ri.

14

Compute only Ai ' iTiiV1 A V2 r at this step.

Step 4: Compress the columns of A' using SVD.
12 U2f5SD

Ai = ui+lyi+lv(i+l)T

Ai [Vi+l , V' 1] [F

12 1 2 ii+1 O]

where Fii+1 G R
r ix r i+ l and Vi+ 1 C Rp'p .

Step 5: Check the singular values of A'2.

If all Oj's < (j = 1,2,...,ri), then exit 1.

If all aj's > 7 (j = 1,2,...,ri+1 < ri), then exit 2.

Otherwise, continue with v = v + (number of a's > y).

Step j: Update the transformation matrix.

o v(i+i)T

where I implies I e Rcx-.

Step 1: Calculate the Ai submatrix.
22

Ai = ViTAVi e RPxP
22 2 2

Steu 8: Let Ai+l = Ai2, i = i + 1. Go to Step 3.

ExiC 1: The system aggregates. F TATT, G = Th, D = CTT, where F. = 0.

Exit 2: The system does not aggregate. F = TAT T, G = TB, D = CTT , where

Exit2: he sste doe no aggegae. = TTTG = B, - CT, her

15

F has full column rank.

Upon exit from this algorithm the original system has been transformed into

the GHR using orthogonal matrices, a numerically stable transformation

process.

The chained aggregation algorithm identifies the supremal A-invariant

subspace in the NEC] [13]. This can be understood by referring to Eq.

(2.3.2). In the new bases the supremal A-invariant subspace in the N[C] is

immediately seen to be

where X C Rsxl, and s = d(Fkkk).

Any vector lying in this space is obviously A-invariant, i.e.,

F[01C [01
and lies in the NIC],

ED1 0 01 [] = [01.

To better understand Figure 2.1, consider the system at step 3 on the

first pass through the algorithm. Aggregation will occur at this stage if

and only if the NEC] is A-invariant. i.e., ANCIC N[C]. If the F matrix in

Figure 2.1 is replaced by the C matrix of the system, the columns of V2 are

seen to span the N[C] and therefore AV2 C V2 . This immediately forces the

A1 2 submatrix to be zero

. - 7

16

12 V AV2C V1 2 = 0

Thus, by using Figure 2.1 and noting what causes aggregation, an understanding

of why the A1 2 submatrix must be zero can be obtained.

2.4. Observability and Controllability Tests

An immediate consequence of the algorithm is its ability to test the

observability of a system in a numerically stable manner. By considering the

dual problem (AT , BT), the controllability of a system can also be checked.

Algorithms similar to the chained aggregation algorithm dealing specifically

with the controllability problem have been given in [10,12.14].

The following definition is needed.

Definition 2.4.1: The pair (A,C) is said to aggregate, if when represented

in the GHR the Fk-l,k submatrix equals zero.

The tests using the chained aggregation algorithm may now be given.

Theorem 2.4.2: The following statements are equivalent:

1. The pair (A,C) is unobservable.

2. The system (A,C) will aggregate.

Proof: (I implies 2).

If the pair (A,C) is unobservable, then the Hautus test will result in

a matrix of rank less than n. Since observability is invariant to a state

MJ

17

space transformation, the Hautus test may be applied to the GHR induced by

the pair (A,C)

F1I-XI F1 2 0 o . 0

F2 1 F22 -I F2 3 0 . . . 0

0

Fk-1,1 Fk-1,2 . . . Fk-1l,k.l-XI Fk-lk

Fk,1 Fk,2 . . . Fk,k-I Fk,k-XI

D1 0 . . . 0

Because of the GHR construction, the only manner in which the above matrix

can have rank less than n for any X is for the Fk-l,k submatrix to be zero.

This is exactly the condition for aggregation.

(2 implies 1) is now clear. If the system aggregates, then Fk-l,k = 0

and the pair (AC) is unobservable, since the rank of the above matrix is

less than n for any eigenvalue of the system. 0

The dual result follows immediately.

Theorem 2...3: The following statements are equivalent:

!-IOIl

1. The pair (A,B) is uncontrollable.

2. The system (AT BJ) will aggregate.

Proof: Similar to the above proof.

19

CHAPTER 3

MODIFIED CHAINED AGGREGATION

3.1. Introduction

In the basic chained aggregation algorithm, only the output information

structure of the system is used. By incorporating the input structure, the

system can be forced to aggregate , using state feedback, when the R[R 1

contains the R[A 1 2], where A1 2 and B1 are the submatrices generated during

one of the steps in the algorithm. The ability of the input to satisfy the

above condition is determined using the singular value decomposition (SVD)

to identify the rows of B1 which are linearly independent. By the proper

choice of input, u, these linearly independent rows can then be used to

annihilate the largest possible subblock of the A12 submatrix. Further

explanation is given below.

This process, called modified chained aggregation (MCA), has been

developed in [2] for use in Three-Control-Component-Design (TCCD). The

concept of TCCD (2,6,7] arises in the Generalized Hessenberg Representation

(GHR) structure. Briefly, this hierarchical design procedure uses the input

in three specific ways. First, the input is used to force aggregation.

Second, the aggregate dynamics are adjusted to the specifications of the

designer. Third, if enough input structure exists the residual dynamics can

be adjusted.

The application of the above concepts has been carried over into

controller design for a special class of nonlinear systems (51, thus

20

broadening the scope of problems capable of solution using the developed

algorithms.

An algorithm [10] similar to MCA appearing at approximately the same

time, although the implementation had not been completed, was motivated by

determination of the supremal :A,B)-invariant subspace in the N[C] [13].

Section 2 demonstrates how the input structure is identified and used

to enhance the chained aggregation algorithm. The steps of an implemented

algorithm which accomplishes the goals of both procedures above [2,10] are

contained in Section 3.

3.2. Identifying The Input Structure

To motivate the use of the input structure within the chained

aggregation algorithm, consider the following example.

Suppose the system after one stage of chained aggregation has the

following form:

[]=[A]A + [u (3.2.1a)

y = [D 0]l[zl] (3.2.1b)

Aggregation occurs when A1 2 = 0. If A12 # 0, but R[A 1 2]C R[B1], then by

selecting the input u = - B1 12 z2, the system can be forced to aggregate.

This assumes the states z2 are available for feedback. If these states are

*

21

not explicitly available, then some type of dynamic feedback must be

introduced to reconstruct them. If R[A 12]lf[Bl], then the MCA algorithm

identifies the largest subspace of A12 contained in the RIB 1] and performs

another step of chained aggregation using the subspace of A12 not contained

in the I[B,] as the aggregating matrix.

SVD is used to calculate the R[B1], thus a numerically stable

computation is obtained. To identify the RIB 1] a row compression is

performed within the MCA algorithm. The orthogonal transformation which

achieves this row compression is then treated as a state space

transformation which is used to transform the system matrix. After

transforming the system matrix, the A1 2 submatrix is divided into two

submatrices; one submatrix A1 2 is not in the R[B,], and the other submatrix

12 is. If i1 represents the compressed rows of B1 , then by using the

feedback u = 1A submatrix can be annihilated in the system
1 12z2, the A1 2

matrix. Again, the states z2 have been assumed to be available.

Consider the SVD of the B1 submatrix

B1 =U 2 VT U [] (3.2.2)

nx r nI x (nl-r)
where U1 G R , U2 G R , S = diag(l1 c2 r,), and the aj's

are the singular values of B1. For ease in implementing the algorithm the

rows of the B1 submatrix are compressed down. To achieve this result, B

must be premultiplied by (U2 , U1iT

22

The resulting B1 submatrix has full row rank. If the original B matrix had

the form B = [BT BT]T, then the desired row compression in thB

T
the BT

1'T2 [U 2 1

submatrix can be carried out by performing a state space transformation with

the following matrix.

U2 0

U1 0 13. 2

Performing a state space transformation with this matrix results in the

following structure:

[2 1 22 T1
TAT = T 1A 01 0U

T< JL1 2

=[V](323

23

FU12AiiU 2 UT2AiiU1 UT2A12 A'11 A12l
=UTAj IU2 UTA11U1 UTA2iF A12

1 (3.~2,S)

A 1 2U2 A 2lu1 A 22 21 A 22

If A1 2 # 0, then it is used as the aggregating matrix in the next step of

chained aggregation.

The above technique is used throughout the MCA algorithm.

3.3. The Modified Chained Atzrexation Alaorithm

rixn

Initialization: A' = A e Run n, B1 - B e Rn"", C G R 0, i 0,

p - n, v = 0, a = 0, i = 1.

Step 1: Compress the columns of C using SVD

C = Ui i viT

This implies

c~v ~~]=ut U2]OO 0 [Uisi .o]0
•xr ux (n-rl)

where V R R and V R Let Q - r

Step 2: Initialize the transformation matrix

Ti = i T

Step 3: Calculate the Ai submatrix
12

A = viTsivi i A e Rax(p-a)
12 1 2 12

-7

24

If A' 0, then exit 1.

12-

Step 4: Calculate B'

F01
B i

B ,i

A A
A1i Olin Ai (n_ -0 ,xz

where 0 e R x BI e R and B e R with A +1 2 ih

Ste 5: Compress the rows of B1 down using SVD

Ai Ai Ai A-,B' = ' ViT

Bi

A iT A iT A-

where e1 ROM

Note: The value for has changed between steps 4 and 5. It now

A-
equals the number of linearly independent rows in the B1 submatrix.

Step f: Update the B matrix

25

Bi+l 0 ((A1 -0)xm)

.B2
A.
B'
L2

Stev 7: Update the transformation matrix

1 0 0

A iT
i 0 U2 0

0 0 1
p-a

Step 8: Update the Ai submatrix
12

A

2 iT2A where A' I21 2 '12

12 1- 12 " where AI2 e Rx(p-a)

If A' 0, then exit 1.
12

Stey 9: Calculate the A' submatrix
22

Ai2 viTAivii

22 -2 -2 , where Ai2 e R(
p- a)x(p- a)

p = p - a

T =T + a

i = i+1

Sto 10: Compress the columns of A-2

26

A Ui ViT

12

Ai-Vi i v Si 0

where V eR p a and Vi e Rp x (P- a)
1 2

If a p, then exit 2.

Stev 11: Update the transformation matrix

T i =j iT Ti - 1

0 ViT
L0 2]1

Step 12: Compute the new A' submatrix
12

AI2~ LV 2 jA' H~)i
12 IViTAi Vi

122 2J

where Ai Ce R(a+o)x(p-a)
12

If Ai = 0, then exit 1.

Ste 13: T = - - a . Go to Step 4.

Exit 1: The system will aggregate. F TATT , G TB, and D CrT where

= i .
T = T.

Exit 2: The system will not aggregate. F = TATT, G = TB, and D = CT, where

T =Ti.

27

CHAPTER 4

OUTPUT FEEDBACK DESIGN USING THE CHAINED AGGREGATION ALGORITHM

4.1. Introduction

Because of the computational and numerical difficulties associated with

large scale systems, a reduced-order model of the system is advantageous

during the design process. As stated in Chapter 2, the Generalized

Hessenberg Representation (GHR) of a system lends itself nicely to the

possibility of identifying a suitable reduced-order model. By comparing the

sizes of the submatrices using an appropriately selected norm generated

during each stage of chained aggregation, a trade-off between reduced-order

model dimension and subsystem coupling can be made to obtain the desired

reduced-order model. The resulting reduced-order model contains the

strongly observable modes, by construction, which may or may not be the

dominant system modes.

This technique of generating a reduced-order model has been conducted

on a particular large space structure. The general space structure problem

is introduced in Section 2. Section 3 contains the description of the

particular structure which was studied. The design procedure which was

carried out is detailed in the final section.

4.2. Introduction of the General Lare Space Structure Problem

Large Space Structure (LSS) problems have received a great deal of

attention. The LSS themselves are usually quite flexible because of weight

28

restrictions imposed during their transport or deployment in space. The

problems are further complicated due to the zero damping environment of

space and the light natural damping of the structure itself. A recent

review of the literature on LSS Control can be found in [15] with more

information available in [16-23).

Initially these systems are often modelled by partial differential

equations. For a practical solution, one must reduce the infinite

dimensional problem down to one of finite dimension. The most popular

method of reducing the infinite dimensional problem has been the finite

element method [15], a structural analysis technique. The differential

equations resulting from the finite element method are

Mq + Kq = BFU (4.2.1a)

y = Cvq , (4.2.1b)

where q e Rn, u e Rm, y E Rr, and the constant matrices M, K, BF, and Cv are

of compatable dimensions. N is the mass matrix, which in general is

positive semidefinite, and K is the stiffness matrix, which is positive

definite. The physical nature of most LSS problems allows the damping to be

neglected in the modelling, i.e., there are no terms involving q in Eq.

(4.2.1a).

To perform chained aggregation on the system it must be represented in

state space form. A common method to obtain this representation has been to

simultaneously diagonalize K and K with a unitary matrix 1 [17,181 such that

-7

29

jTMj _ I and #TK| - 02.

By introducing the transformation q = i Eq. (4.2.1) becomes

+ 2 = (TBFu (4.2.2a)

y = Cvv . (4.2.2b)

A state space model of the system in Eq. (4.2.2) can now be

constructed. Let

I

Then Eq. (4.2.2) can be written in state space form.

= + u 4.2.3a)• _2 TB

y = [0 CvFi . (4.2.3b)

If M is positive definite then another state space description can be

obtained by multiplying through in Eq. (4.2.1) by M-I. Letting

yields

-7

30

-Ml 0 q K-l F
y =[0 C] [q (4.2.4b)

The latter state space description was used in the design process

because the original coordinates (qT, qT)T are retained in the state space

description.

For ease in discussion, the following equations are introduced, with

the obvious equivalence with Eq. (4.2.4)

x = Ax + Bu (4.2.5a)

y = Cx (4.2.5b)

4.3. A Physical Problem Description

The structure analyzed herein has been proposed by Charles Stark Draper

Labs and can be seen in Figure 4.1. All of the numerical values are

summarized in Appendix B. This same structure has been analyzed in [19]

using positivity concepts.

The tetrahedral apex represents the antennae feed, with members 1-6

forming the support structure and bi-peds 7-8, 9-10, and 11-12 being

supports/controls which are fixed to an inertially stabilized (assumed)

antenna dish. The physical nature of the problem allows sensors to be

placed only on the bi-peds; no sensors can be placed on the feed itself.

7

31

(2) Leg 1 Station 1
(D Leg -1 Station 2 1 - Node

) Leg 2 Station 1 Number

Leg 2 Station 2 e

@ Leg3Station 1 2 -4 Member~Number

Leg 3 Station 2

z 10 9 3

6 8/
Y7

FP- 7867

Figure 4.1: Draper Tetrahedral Truss

7

32

The actuators control the elongation and contraction of the bi-peds. Only

velocity information has been used in the system model; displacement of the

bi-peds is not sensed or controlled.

Because uncertainty in the model parameters exists, a perturbed system

must be studied. A perturbed system is simply different M and K matrices.

For the design to be acceptable, the objective must be satisfied for both

the nominal and perturbed systems.

The objective is to damp the x and y deflection of the feed, node 1, to

less than .0004 and .00025 units, respectively, in 20 seconds. Thus, the

problem is to control the apex in the presence of modelling uncertainty and

without directly controlling or measuring its motion or position.

4.4. The Design Procedure

The design process began by verifying the observability and

controllabilit: of both the nominal and perturbed systems using the chained

aggregation algorithm. The eigenvalues of the two systems were also

computed and can be found in Table 4.1.

The next step was to obtain a reduced order model which accurately

represented the overall system in general and included the desired x and y

deflection modes of node 1 in particular.

The original output structure, the C matrix, of the system contained

only velocity measurements of the three bi-peds and by aggregating the

system with respect to this information, the x and y deflections of node 1

would be forced into the residual subsystem, an undesirable result. To

circumvent this problem a C matrix containing both the controlled outputs,

33

Table 4.1: Nominal and Perturbed System Eigenvalues

SYSTEM EIGENVALUES

NOMINAL 0 + j12 .92 0 + j10.28 0 + j9.25 0 + j8.54

O + j4.76 0 + j4.66 0 + j4.20 0 + j3.40

0 + j2.96 0 + j2.89 0 + jl.66 0 + jl.34

PERTURBED 0 + j13.97 0 + j10.92 0 + j10.30 0 + j8.94

0 + j5.71 0 + j5.68 0 + j5.15 0 + j3.85

0 + j3.56 0 + j2 .96 0 + i1.47 0 + jl.17

the x and y displacement of node 1, and the measured outputs, the original,

nominal C matrix, was constructed.

Using this C matrix together with the nominal system matrix A, four

steps of the chained aggregation algorithm were implemented with the system

not aggregating. The transformation matrix resulting from this aggregation

process was then used to transform the nominal system, (A,B.C), and the

perturbed system, (AP,BP,CP). The following structure for both systems was

identified

. .] = [All Ali[z.] 1]

r] + Bj] (4 . .1 a

34

y C1 1za (4.4.1b)
= [C 1 O] la] ,

where z aG R 1 6 , zr G R8 , u 6 y R6 , and the matrices are partitioned

accordingly.

The eigenvalues of the A,, and A2 2 submatrices, subsequently referred

to as the aggregate and residual subsystems, respectively, were (;omputed and

are in Table 4.2. Two immediate conclusions are obtained by .omparing tte

eigenvalues in Table 4.1 with those in Table 4.2. First, the twc sets A

eigenvalues are both purely imaginary and nearly equal. Second, the lower

frequencies were not necessarily placed in the aggregate subsystem, but

Table 4.2: Nominal and Perturbed Subsystem Eigenvalues

SUBSYSTEM EIG&WALUES

NOMINAL

AGGREGATE 0 + j8.04 0 + 37.43 0 + j7.4 3 0 + j4.63

0 + j4.59 0 + 34.20 0 + jl.94 0 + jl.43

RESIDUAL 0 + j12.00 0 + j3.52 0 + j3.02 0 + j2.96

PERTURBED

AGGREGATE 0 + j8.49{ 0 - j8.36 0 + j8.36 0 + j5.64

0 + j5.62 0 + 35.15 0 + jl.75 0 - j1.24

RESIDUAL 0 + j13.16 0 + j3.50 0 + j3.35 0 + j2.66

'AA

35

instead the strongly observable modes have been forced into the aggregate.

This differs from a modal decomposition of the system where the lower

frequency modes are retained to form a reduced order model and the remaining

modes are discarded [24]. With the chained aggregation procedure the

important modes are those modes which influence the observable modes of the

system the most. It is not necessarily concerned with the relative

frequencies of the modes.

The effect of the neglected modes, both residual and infinite

dimensional, on the reduced order model has been referred to in the

literature as controller and observer spillover [17,18]. This refers to how

the unmodelled modes are affected by the input and how they affect the

output, respectively.

An initial check to see how much coupling existed from the residual

subsystem into the aggregate subsystem was performed by comparing the sizes

of the submatrices involved. The size used for each submatrix was the

matrix 2-norm, i.e., the largest singular value. The norms computed were

II A1 1 112 = 81.92 , 1I A1 2 112 = 6.32

11 A 21 112 = 94.40 , II A2 2 112 = 148.37

and

II A 1 112 = 94.13 II A 2 112 = 5.07

36

II AP1 112 = 97.88 , II A II 8.18

The differences in magnitude suggested the coupling was weak and could be

neglected (25].

Further analysis supporting this claim was obtained from a geometric

setting, following the work in [61 on near unobservability. Intuitively, if

the residual subsystem was nearly unobservable in the aggregate subsystem,

then the coupling of the residual into the aggregate would be considered

weak, i.e., the A12 submatrix would have little influence on the aggregate

states. As shown later this was made more rigorous by showing that the

subspace

U R 1

2[2]

was near the subspace

V = A2

it[22].

This suggested that the residual was nearly unobservable by the aggregate,

so the A1 2 submatrix was neglected in the analysis.

To strengthen the concept of one subspace being near another, canonical

angles are defined.

Definition 4..1 (!6,26]: Let U and V be subspac. if Rn with orthonormal

bases U and V, respectively. Let oi be the singular values of UTV. Then

the canonical angles between U and V are the numbers

37

= Cos- 1 0. 0
1 1

Referring to Figure 2.1 a basis for U and a basis for V was obtained by

performing singular value decomposition on both matrices [A 2,AIT and12 ,AT2

[0 ,AI2 T, separately, and using the generated U1 submatrix for each basis.

The canonical angles between subspaces U and V were then obtained using

Definition (4.4.1) and can be found in Table 4.3 for both the nominal and

perturbed systems. In general, the canonical angles were small and the two

subspaces were considered near each other.

Another motivation for neglecting the coupling due to the A1 2 submatrix

is because of the structure of the transformed C matrix and the fact that

output feedback is being used, i.e., the A1 2 submatrix will not be affected

by the feedback.

Table 4.3: Canonical Angles Between U and V For
The Nominal and Perturbed Systems

CANONICAL ANGLES

NOMINAL 0.0 0.0 { 0.0 047.3

20.5 029.9 034.6 042.4

PERTURBED 0.0 0.0 0 12.6 0 13.0 0

21.5 29.9 34.6 42.4

38

By neglecting the coupling and noting that the residual subsystem was

stable, the aggregate subsystem yielded the following reduced order model

which was used in the design process.

a = A llz a + B u (4.4.2a)

y = C lza (4.4.2b)

This model as well as the reduced order perturbed model were verified to be

controllable and observable by using the chained aggregation algorithm.

Because all of the eigenvalues in the aggregate were imaginary, some

type of damping had to be introduced. The structure of the transformed

nominal input and nominal output matrices suggested that output feedback,

u = - Ky, be used to introduce the desired damping. The gain matrix, K, was

obtained using the procedure outlined in [27,28]; more background material

is given in (29,30]. This design approach begins by solving a reference

optimal state-feedback linear quadratic regulator problem. The eigenvectors

associated with the closed-loop system matrix are then determined. If there

are r system outputs, then r of these eigenvectors are retained in the

reduced-order output feedback problem, i.e., an r-dimensional eigenspace of

the reference problem is retained.

To achieve the desired objective for the x and y deflections of node

one, the appropriate Q and R matrices had to be selected. The following

analysis led to the desired weighting matrices. The input weightings were

selected to be equal and large so that the input energy would not be

excessive. The weighting on the states was not as straightforward. After

-7

39

the necessary transformations were carried out to place the system in the

correct structure, the x and y deflections were composed largely of states

15 and 16 with states 13 and 14 corresponding to their respective

velocities. Because the x and y deflections as well as their velocities

were nearly uncontrollable in the reduced-order model, less weighting than

might be expected on these states had to be used. Looking at the feedback

structure, states 1-6 were weighted very heavily and states 7-11 were hardly

weighted, by comparison. State 12 did require more damping, so it was

weighted appropriately. These conclusions were drawn after preliminary

trials and observing how the various states related to one another and how

their magnitudes compared with the other states. The resulting x and y

deflections for both reduced order models can be seen in Figures 4.2 and

4.3.

To verify that the above gain matrix, K, resulted in a desirable design

for the full order systems, it was applied to both the nominal and perturbed

full order models. The resulting x and y deflections can be seen in Figures

4.4 and 4.5.

By examining the trajectories of the full order systems one can see the

slight error introduced by using the reduced-order model during the design

procedure. The i deflections are seen to meet the required objective, but

the y deflections require 28 and 34 seconds to meet the stricter objective

in the nominal and perturbed systems, respectively.

The use of suboptimal dynamic output feedback [27,28,29] could possibly

increase the flexibility and robustness of the solution and should be

investigated in future work.

40

U-)

0

a

0

>U

Ci

M 0 (0

(SITR) SOTIa~io ouoapo

41

Id)

4)

0a
I.'
4)

________ *0

I.0

4)
U

U

*0
4)

I-

(Y)
I-

~4 4)
'0 ~*

C 4)
U
4) .~

I..
0

4)
a

(4
4)

~

N
0

U
4)

4)

- - N

0 0

(s~ttzfl) Suo ~ ~uo ~P0N

42

0

4))

64
0

c 0

Cr)

as

NN
CD CD CD C

(SIT11) UOT10TJO auO3P)

43

V)

"0
0

4

0

CD

G N

(si~~~uti)4 1..~al a U a

44

CHAPTER 5

CONCLUSION

A computer implementation of chained aggregation and modified chained

aggregation using orthogonal transformation matrices has been presented. To

obtain the orthogonal matrices the singular value decomposition has been

incorporated into the algorithm whenever a state space transformation must

be performed. Because orthogonal matrices have been used, the problem sen-

sitivity will usually not be altered.

In Chapter 4 the algorithm has been used in the design of a control for

a particular large space structure prototype. The reduced-order model sug-

gested by using the chained aggregation algorithm contains the desired

information structure, the x and y deflections of node one, and can be used

during the design process and, or in the physical implementation of the con-

trol, if a dynamical feedback is to be used.

Future research may now focus on the numerical solution of practical

problems using the design schemes presented in past Generalized Hessenberg

Representation articles.

45

APPENDIX A

SUPPORTING SOFTWARE

The two algorithms developed in Chapters 2 and 3 have been incorporated

into a single computer program. The program has been written in FORTRAN

with the singular value decomposition subroutine taken from LINPACK [31]. A

flowchart of the software follows.

Input the System Matrices]

(A,B,C)

Initial ization
p =n, 0 =, 1 = 0, T = 0, a 0

ltChained

B = B |

Bt = 0

MCA

opress the Columns of C

If P(C)STOP 1

Flowchart continued on next page.

46

Compress ~ Y thsos fE f PCi B STO 2
No1

aT L(C

Flowchart contine nnx ae

47

T 00 U jr

2 1 0 02 1

L 2 =VAV

0 0-

FocaT cotne on nex pae

48

T= [0 VT]T

121

[0 V
1

AA22

STOP: 1. System will not aggregate.

2. No C matrix.

3. System will aggregate.

FlowChaint Aggreaton net page

49

F TATT, G - TB, D CT

An explanation of the variable names follows:

a = The number of linearly *ndependent columns in the C and
A12 submatrices. It is redefined after every column
compression which is performed on these submatrices,

= The number of linearly independent rows in the B
submatrix. It is redefined after every compression ot
the rows of B1.

= The sum of the a's as they are generated.

p = The size of the current residual subsystem.

The number of zero rows identified in the top of the B
matrix.

The equivalence between the greek symbols used herein and the variable

names used in the actual computer program are as follows.

NIDE

= NOZERO

a = NZ

- NZB

p = SIZA

During the design process in Chapter 4 additional software was

developed. Many of the routine linear matrix manipulations were performed

using LAS (321. The software required to compute the gain matrix, K. was a

50

mixture of LAS code and FORTRAN software. The IMSL subroutine EIGRF was

used to obtain the eigenvalues and eigenvectors of the closed-loop matrix.

A flowchart description of the steps involved follows:

Transform the system

such that C = [1 0]

For this particular problem this could
be done using orthogonal transformations
because of the special orthogonal nature

of the original C.

Select the weighting

matrices Q and R

Input A and B

Solve the f 11 order Ricatti Equation
MA + AIM - MBR- 1 BTM + Q = 0

F Form the closed-lo°n Iystem matrix

IF F=A-BR B M

Determine the eigenvalues

and eigenvectors of F

Flowchart continued on next page.

51

Select r of these eigenvectors, form W.
(for complex conjugate pairs
the real and imaginary
parts make up 2 of the

columns)

Partition W

=[KI
Y Q R

rx r

Yt = v Ff uT

ZesYes

If p(Y) _j r, GO TO START

GO TO A

N Y z t"

Partition A[11 A12]
A11 G Rrxr

lieot
GO TO A

Flowchart continued on next page.

52

Partition R-IBTM

[K1 K2]

K R" r

K = K1 + K2 N

FExamine Trajectories

Acceptable No GO TO START

or
GO TO A

Software independent of LAS was written to generate the system

trajectories using the initial condition, the state transition matrix, the

total time, and the step size. The state transition matrix was obtained

using the eAt operator in LAS. A graphing routine which allows the plotting

of any of the resulting system trajectories, as well as the x and y

deflections of node one was also developed.

53

APPENDIX B

NUMERICAL VALUES ASSOCIATED WITH THE LARGE SPACE STRUCTURE

The numerical values associated with Eq. (4.2.1) for both the nominal

and perturbed systems are given in Tables B.1.B.2,B.3,B.4 and Tables

B.5,B.6, respectively. Note that matrices BF and Cv are identical for both

systems. If the state space representation in Eq. (4.2.3) is desired, the

required I matrices are given in Tables B.7 and B.8. The relationship

betwe(,u the coordinates (qT , JT)T and the nodes of Figure 4.1 can be found

in Table B.9. The transformation matrix used to generate Eq. (4.4.1) for

both the nominal and perturbed systems is given in Table B.10. All of the

reduced-order system matrices (A llB 1 ,CI) and (API.B 9,Cp) are contained in

Tables B.11,B.12,B.13 and Tables B.14,B.15, and B.16, respectively. To

obtain the system used during the design of the K feedback matrix, the

transformation matrix in Table B.17 was used. Tables B.18 and B.19 contain

the final Q and R matrices used to generate the K feedback matrix which is

given in Table B.20.

54

Table B.I: Mass Matrix for the Nominal System

2 0 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0 0 0 0 0
M=

0 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 0 2

7

55

o en - n -

enen 'I c n ' en

oC) 0 e 0 0 e 0 en 0 0

vi I en kn e
e'4 C4 v~ 00

00 .0 I 0 0 0 00 \ '
0 en No 0 00 0 0 00

cnC %0
C

14 en %Q 0 0 0 en in .o 0 0 0

C 00 e 0 0) 0 "T 0nen e 0 0

l 0 e

I -

o- C4 r- 0 0C e 0 0 e

4. en 1= r-)~ 0 0 0 0D 0 0

0d)0 en C14 0 A en en w
eq -W0 0 e 0

e n N- en n tC 0 0 0

ql0 n el 0 en en en

I 44

44
o n e0 n 4 0 0o 0 0 0 0

\0 1.10 l 0 0 ~e
en - 0 elr C4 r= 0 . 1 0.oe

0% 0 4 en en e en m00 e

c- c4 - 00 en -N - en -T

O 0\ en ell 0 v 00 0 0 0

r- C14 ID 0 1 0 4,0

C4I en - I

56

Table B.3: The B F Matrix

.0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000

-.3535 .3536 .0000 .0000 .0000 .0000

.6124 -.6123 .0000 .0000 .0000 .0000

-.7071 -.7071 .0000 .0000 .0000 .0000
BF =

.0000 .0000 -.3536 .3535 .0000 .0000

.0000 .0000 -.6123 .6124 .0000 .0000

.0000 .0000 -.7071 -.7071 .0000 .0000

.0000 .0000 .0000 .0000 .7071 -.7071

.0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 -.7071 -.7071

7/

57

o 0 0 0 - r

o 0 0 r

o 0 0 0 0 0

o C0 0 0 0 0

58

Table B.5: Mass Matrix for the Perturbed System

4 0 0 0 0 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0 0 0 0 0

0 0 4 0 0 0 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0 0 0 0 0
M0

0 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 0 2

59

o t 0 00 0o 0 0a ~c

rIi 0

o -' o0 0 0 0 -
a 0 0 0 0% 0 0 00

-4 -

o o 0 0 '0 0 0Q N. 0I e 0

co 0 0 00 0m ~
T N. 0 0 l 0 en ~ . 0

C4 0. ON 0 4 '.a, 0 (Z 0 \.

C4 -4 c .

-. - .. ' 0 0 0 '. 1 0 0 0

-e a' 0 0 0 \C. 0n .' %

0C1 I 000

Q 0

'.0C 4 00Ien C14 .

60

r- e t- Ch en ' \O 0% ON t4
en 00 00 IIl v ON 0% 00 \C 00
00 en Q 0a,'0 0 0 e

o o ~ ~ ~ - C~ 1 00 m

'*0 t- \0 t- ON - 0\ 00 00 a,
0% eq oo r-4 r- .-4 4n0 ~ 0

tdn -In, U 00 -4 ~ 0 0D~ ~ ~ C~ -l 0n e4 0

00 0 0 c'i cn~ 0 ' 00 00 -4 - 0\
eq0 00 0 0 en I" (11 -

on % 0- V) 00 40 IT efo ONI -m
o en 0 N' ci \0 Q\ t 0 0 N 4 e

v f I~ c * 00 '0i q ' 0 -4 en 0

0 0 e'4 N' 0 0 % 00 C-4 0
cm 00 cn r - \ 0 a,~

- 0 0 , 0 00 4Ir '0? 0% r- 00

a~ r - 'I 4 0 00 'I M% In N* C4

0n 0 0 0 0 0 - 0t 0n r

0 1^ I

000 0 0 0 0 0 0

N 0 0 4 m~ Q -1 en qT~

0 4 0 00 0 ls \0 0 0
0 20 0 C'o (0 00 0 0 m r 0

0%~~0 r--- 0 0% 0 . - r- O-

C-4 0% An &n t cf i '0 w ~ *

0\ 00 '0 0 W) ' r- \0 C0 4

en4 m .- 4 0-4-4 0 -q ,

0\ W. 0 0\ 0 00 m% '0 1 C14- '
.0i en 0% 0C04q 0 0 0 - T r

we 0% 0\ r- 0 0r-0% , - 0
0 0 m ~ n 0 C n 0

0% 00 0 el 0 4e 0 C4 00 r-. '000
0 ~ -0n kn mn0 ~ ,

-S. 0 % e4 c % 0 n0 0 r- '
Ci- - -

61

4 U ~ t- 0 00 0
C4 00 N 4 (00 a, (N '0q
o n 0

r 00 a, .-) 'o ' c n0
a kn 0 00 0 \0 I~ r- 00 - t-

\0 en ON 14 en \-Q 00 0% 0 0% r- 0
oq 0 -4 (N 0 C N (N4

S 00 m '0 0o 0 rqr -0

on 0e 0 0 (N 0n 00 (

N ~ (N v e-
0% ~ C .n en 0en0 ' 4K- C

0 0o m- ch 00 t N n

ON .4 00 r- aN qr (N C7,0
a,0 0 n 0 0 0 0 0 0N r 0

04 CIO 'I 0 en 04 C4 00 m 0

'0r '0 0 00 0 r - 0 -

(N q~ 0 en In 0n ON' % ~ ~
<D M 0 0 0 0 0 0 It 0 0

04 In C

0 0 0 CD Wi) 0n -CD- (

o0 o C\ qn .o 0t 0 0 'I

r- 0 0% 0% 00 '0 (N - 0 '
00 tn 04 0 K-- kn 00 (N -4 't 00 -

0n 0o ON 0 0(N 4 0 (N -

W) tn 't0 0o 00 0-0 (N ' 0 00
CC! !- 0: .-4 C- 0 - c - %

0 0 0 v n 0 00 0 00 en 0 00

0 0vN c f

C\ 00 1 0 1- ie 4 0 0 0n 004 et 0
('00 00 en ~ 00 - '00 C- 7

ON fn 00 ' 0 - N

C14 Tr .4 0 0 0D 0 0

62

Table B.9: Relationship Between the Coordinates and the Nodes

q1 (ql) = Displacement (Velocity) of node 1 in the negative x direction.

q2 (q2) Displacement (Velocity) of node 1 in the negative y direction.
q3 (q3) Displacement (Velocity) of node 1 in the negative direction.

q4 (.q4) = Displacement (Velocity) of node 2 in the negative x direction.

q5 (q5) Displacement (Velocity) of node 2 in the negative y direction.

q6 (q6) Displacement (Velocity) of node 2 in the negative y direction.

q7 (q7) Displacement (Velocity) of node 3 in the negative idirection.

q8 (q8) Displacement (Velocity) of node 3 in the negative y direction.

q9 (q9) = Displacement (Velocity) of node 3 in the negative z direction.

ql0 (q) = Displacement (Velocity) of node 4 in the negative direction.

q81 (q11) g Displacement (Velocity) of node 4 in the negative y direction.

q12 (q12) Displacement (Velocity) of node 4 in the negative z direction.

63

Table B.10: Transformation matrix which generates Eq. (4.4o1)
T (T1 , T 2, T 3 I

1.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 1.0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .3104 -.4680 -.2701 -.4736 .0660 .4352

.0000 .0000 -.0002 -.3374 .5846 .0003 .5133 .0934

.0000 .0000 .4170 .0379 .0222 -.6324 -.0673 -.4554

T .0000 .0000 .1492 .0171 .0101 .1074 .0730 .0017

.0000 .0000 -.0001 -.0236 .0406 .0000 -.0325 .0460

.0000 .0000 .0000 -.2887 .5000 .0000 -.2887 -.5000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .5646 -.4162 -.2401 .5909 -.1369 -.1567

.0000 .0000 -.0003 -.2285 .3958 0002 -.3900 .4890

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

,0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 -.0044 -.0058 -.0034 .0002 .0076 -.0036

.0000 .0000 -.2904 -.3933 -.2272 .0200 .5403 -.2494

.0000 .0000 -.5517 -.4487 -.2591 -.1211 -.4185 -.1283

. • , .,.. . .. ~ •T2":l- z_ ' 2 x

64

Table B.10: (Continued)

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0)00 .0000 .0000

.000, .0000 .0000 .0000 .0000 .0000 .0000 .0000.0000 .0000 .0000 .0000 .0000 .0000 .0000 -.2192
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 -.4494
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0030 .4097 -.1606 -.0030 .0000 .0000 .0000 .0000

-.0049 -.3374 -.3979 .0049 .0000 .0000 .0000 .0000
-.0118 -.4283 .1691 -.0118 .0000 .0000 .0000 .0000
-.6905 .0381 .0624 -.6916 .0000 .0000 .0000 .000
.7046 -.0237 .0513 -.7036 .0000 .0000 .0000 .0000
.0003 .5773 -.0001 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 -.9996 -.0288 .0000 .0000
.0000 .0000 .0000 .0000 .0288 -.9996 .0000 .0000
.0851 -.2043 -.0398 .0852 .0000 .0000 .0000 .0000

-.0653 -.2285 .5824 .0652 .0000 .0000. .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 -.6203 .6515
•0000 .0000 .0000 .0000 .0000 .0000 .0002 .0001
.0000 .0000 .0000 .0000 .0000 .0000 -.6875 -.3336
.0002 .0007 .0084 .0002 .0000 .0000 .3776 .4628
.0200 .0543 .5924 .0203 .0000 .0000 -.0055 -.0067

-.1210 -.3203 -.2984 -.1210 .0000 .0000 -.0001 -.0002

65

Table B.10: (Continued)

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 -.2188 -.3792 .8991 .0000 .0000 .0000

.3797 -.8988 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .7071 .0000 -.7071

.0000 .0000 .0000 .0000 .0000 -.7071 .0000 -.7071

.7783 .4384 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 -.4496 -.7786 -.4378 .0000 .0000 .0000

0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000.0000

.0000 .0000 .0000.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .OCOO .0000 .0000
.3761 .0001 .1360 -.0785 .0000 .0000 .1569 .0000
.0000 .0000 .6124 -.3536 -.0001 .0000 -.7070 .0000

-.1926 .0000 -.3769 .2176 .0000 .0000 -.4355 .0000
.2672 .0001 -.4630 .2673 .0001 .0000 -.5346 .0000

-.0039 .0000 .0067 -.0039 .0000 .0000 .0077 .0000
-.0001 .0000 .0002 -.0001 .0000 .0000 .0002 .0000

J-

66

Table B.11: Nominal reduced-order system matrix
A = [A1 , A2]

.00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00

-1.83 1.06 .00 .00 .00 .00 .00 .00

-18.34 -10.59 .00 .00 .00 .00 .00 .00

.00 1.67 .00 .00 .00 .00 .00 .00

.00 1.67 .00 .00 .00 .00 .00 .00

8.95 5.17 .00 .00 .00 .00 .00 .00

.89 -.52 .00 .00 .00 .00 .00 .00
A1 =

.00 .00 -.18 .43 .29 -.29 -.21 -.37

.00 .00 -.15 .30 -.24 .24 .61 -.30

.00 .00 .18 .57 -.29 .31 -.28 .39

.00 .00 -.64 -.10 .52 .46 .05 .27

.00 .00 .62 .02 .48 .51 .04 -.33

.00 .00 .25 .25 .41 -.41. .52 .52

13.93 6.67 .00 .00 .00 .00 .00 .00

6.10 6.06 .00 .00 .00 .00 .00 .00

7

67

Table B.11: (Continued)

.00 .00 .00 .00 .00 .00 -1.00 .03

.00 .00 .00 .00 .00 .00 -.03 -1.00

17.19 12.86 -10.53 13.76 -13.33 -4.47 .00 .00

-42.45 -23.86 -40.56 .87 -.17 -4.48 .00 .00

-27.22 19.99 18.54 -10.96 -10.40 -7.22 .00 .00

26.20 -18.52 -21.41 -10.50 -10.67 7.22 .00 .00

20.70 -48.97 19.77 -.43 -.34 -9.17 .00 .00

33.66 24.04 -26.28 -6.35 6.71 -9.17 .00 .00
2 =

.00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00

.00 .00 O00 .00 .00 .00 .00 .00

23.77 -.57 19.98 -1.26 1.44 .00 .00 .00

12.83 1.02 10.78 -.68 -2.66 .00 .00 .00

68

Table B.12: Input matrix for the uominal reduced-order model

.0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 -.1631 -.4726 .0000 .0000

.4728 .1628 .0000 .0000 .0000 .0000

.0000 .0000 .0000 10000 .5000 .0000

.0000 .0000 .0000 .0000 .0000 .5000

.1627 -.4728 .0000 .0000 .0000 .0000

.0000 .0000 .4726 -.1631 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000

0000 .0000 0000 0000 .0000 .0000_I 0 0 .0 0 0 0 .0 0 .0000 .0000

69

Table B.13: Output matrix for the nominal reduced-order model

C = [C1 ' C2 1

.0000 .0000 .0000 .9455 .0000 .0000 .3255 .0000

.0000 .0000 .0000 .3255 .0000 .0000 -.9455 .0000

.0000 .0000 -.3262 .0000 .0000 .0000 .0000 .9453C -

1 .0000 .0000 -.9453 .0000 .0000 .0000 .0000 -.3262.0000 .0000 .0000 .0000 1.0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 1.0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

70

Table B.14: Perturbed reduced-order system matrix

AP= A 1, A2 1

.0 .

.00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00

-2.75 1.59 .00 .00 .00 .00 .00 .00

-22.01 -12.71 .00 .00 .00 .00 .00 .00

.00 2.50 .00 .00 .00 .00 .00 .00

.00 2.50 .00 .00 .00 .00 .00 .00

10.74 6.20 .00 .00 .00 .00 .00 .00

1.34 -.77 .00 .00 .00 .00 .00 .00
A1 =

.00 .00 -.18 .43 .29 -.29 -.21 -.37

.00 .00 -.15 .30 -.24 .24 .61 -.30

.00 .00 .18 .57 -.29 .31 -.28 .39

.00 .00 -.64 -.10 .52 .46 .05 .27

.00 .00 .62 .02 .48 .51 .04 -.33

.00 .00 .25 .25 .41 -.41 .52 .52

8.54 3.91 .00 .00 .00 .00 .00 .00

3.55 3.95 .00 .00 .00 .00 .00 .00

I

71

Table B.14: (Continued)

.00 .00 .00 .00 .00 .00 -1.00 .03

.00 .00 .00 .00 .00 .00 -.03 -1.00

21.77 16.49 -13.08 20.69 -19.97 -6.71 .00 .00

-53.20 -30.20 -51.69 1.56 -.31 -6.71 .00 .00

-34.35 25.48 23.42 -16.51 -15.55 -10.83 .00 .00

32.83 -23.27 -27.74 -15.68 -16.06 10.83 .00 .00

25.94 -61.98 25.19 -.76 -.63 -13.76 .00 .00

42.25 30.32 -33.84 -9.43 10.12 -13.76 .00 .00
A2 =

.00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 .00 .00

.00 .00 .00 .00 .00 .00 O00 .0|

14.20 -.42 11.82 -1.03 1.08 .00 .00 .00

7.66 .77 6.38 -.56 -2.00 .00 .00 .00

72

Table B.15: Input matrix for the perturbed reduced-order model

.0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 -.1631 -.4726 .0000 .0000

.4728 .1628 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .5000 .0000

.0000 .0000 .0000 .0000 .0000 .5000

.1627 -.4728 .0000 .0000 .0000 .0000

0000 .0000 .4726 -.1631 .0000 .0000
BP 0.

.0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000

73

Table B.16: Output matrix for the perturbed reduced-order model

cP= C1 1 C2]

.0000 .0000 .0000 .9455 .0000 .0000 .3255 .0000

.0000 .0000 .0000 .3255 .0000 .0000 -.9455 .0000

.0000 .0000 -.3262 .0000 .0000 .0000 .0000 .9453

.0000 .0000 -.9453 .0000 .0000 .0000 .0000 -.3262

.0000 .0000 .0000 .0000 1.0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 1.0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

74

Table B.17: Transformation used during the design of the feedback matrix K
T = C T1 , T2 I

.0000 .0000 .0000 .9455 .0000 .0000 .325 .00007

.0000 .0000 .0000 .3255 .0000 .0000 -.9455 .0000

.0000 .0000 -.3262 .0000 .0000 .0000 .0000 •9453.0000 .0000 -.9453 .0000 .0000 .0000 .0000 -.3262

.0000 .0000 .0000 .0000 1.0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 1.0000 .0000 .0000

.2198 .1269 .0000 .0000 .0000 .0000 .0000 .0000
-.0006 .0008 .0000 .0000 .0000 10000 .0000 .0000

.1990 -.1149 .0000 .0000 .0000 .0000 .0000 .0000

.0950 .0549 .0000 .0000 .0000 .0000 .0000 .0000
-.0678 .1173 .0000 .0000 .0000 .0000 .0000 .0000
-.0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

S.9082 -.2308 .0000 .0000 .0000 .0000 .0000 .0000
-.2715 .9490 .0000 .0000 .0000 .0000 .0000 .0000

75

Table B.17: (Continued)

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

.9549 -.0001 .1541 -.0030 .0000 .0000 .0000 .0000
T 2 =

.0002 1.0000 -.0001 .0000 .0000 .0000 .0000 .0000

.2143 -.0002 -.9493 .0039 .0000 .0000 .0000 .0000

-.0264 .0000 -.0366 -.9929 .0001 .0000 .0000 .0000

.0000 -.0001 .0000 -.0001 - .9908 .0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 -1.0000 .0000 .0000

.0000 .0000 .0000 .0000 .0000 .0000 -.8801 -.4748

.0000 .0000 .0000 .0000 .0000 .0000 -.4748 .8801

.1970 -.0003 .2623 -.1146 .0348 .0001 .0000 .0000

-.0523 -.0009 -.0696 .0304 .1310 .0001 .0000 .0000

LL

76

Table B.18: State weighting matrix Q

106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 10 6 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 106 0 0 0 0 0 0 0 0 0 0 0 0

o o 0 0 10 6 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 106 0 0 0 0 0 0 0 0 0 0

o 0 0 0 0 0 i02 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 ,) 0 0 0 0 0 10 2 0 0 0 0 0 0 0

o 0 0 0 0 0 0 0 0 io2 0 0 0 0 0 0

o 0 0 0 0 0 0 0 0 0 10 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 io o 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 i0 4 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 i04 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 4 J

77

Table B.19: Input weighting matrix R

103 0 0 0 0 0

0 10 3 0 0 0 0

0 0 103 0 0 0
R

0 0 0 10 0 0

0 0 0 0 103 0

0 0 0 0 0 103

Table B.20: Output feedback gain matrix K

31.6249 .0024 .0087 -.0134 -.0140 .0086

.0024 31.6249 .0086 -.0140 -.0134 .0087

-.0039 -.0025 31.6224 .0006 .0011 -.0005
K

.0125 .0134 -.0002 31.6228 .0006 -.0013

.0134 .0125 -.0013 .0006 31.6228 -.0002

-.0025 -.0039 -.0005 .0011 .0006 31.6224

DJ

78

APPENDIX C

PROGRAM LISTING

CHARACTER* ANS , CFRMT , AFRMT , BFRMT
CHARACTER*20 FANAME , FCNAME , FBNAME , NAME
CHARACTER*20 INAME
INTEGER I , NCC NRC
INTEGER NM NMIN IERR NOZERO
INTEGER FA12 NIDE NZ SOS
INTEGER NRB NCB SIZA NZB
INTEGER K ID JD NRGDMB
INTEGER NMINB FA12S NRA12S STEP
INTEGER FCHND NCBTMP
REAL WORK(100)
REAL A(100,100) , B(100,100) , G(100,100)
REAL C(100,100) , A12(100,100) , TA12(100o100)
REAL U(100,100) , V(100,100) , T(100,100)
REAL E(100) . GDMB(100.100) , TDMB(100,100)
REAL A12B(100,100), A.12S(100,100) *DMB(100,100)

REAL NORM I SIZCHK
REAL SIGMA(100)
LOGICAL INFO

*VERSION aggregate.f CREATED DECEMBER 22,1982 BY: HAL THARP
*

*TO COMPILE THIS PROGRAM:
*f77 -u -o agg aggregate.f

*

*VARIABLE TABLE: MAIN PROGRAM

*

*A CONTAINS THE A MATRIX IN IRE STATE SPACE DESCRIPTION.

*

*ANS .A CHARACTER VARIABLE WHICH IS USED TO CONTAIN TE
* RESPONSE OF THE USER TO A QUESTION.

*

*A12 CONTAINS THE CURRENT A12 SUBMATRIX.

*

*A-12B :CONTAINS THE SUBMATRIX RESULTING FROM TRANSFORMING
*A12 WITH PART OF 17HE U MATRIX GENERATED DURING THE
*ROW COMPRESSION OF A B SUBMATRIX. THIS MATRIX IS
*CONTAINED IN TEE RANGE OF TEE INPUT.

*A12S CONTAINS MhE SUBMATRIX RESULTING FROM TRANSFORMING
*A12 WITH PART OF TEE U MAT7RIX GENERATED DURING TE

79

ROW COMPRESSION OF A B SUBMATRIX. IBIS MATRIX IS
• NOT CONTAINED IN IRE RANGE OF THE INPUT.

B C CONTAINS THE B MATRIX IN THE STATE SPACE DESCRIPTION.

•C :CONTAINS IRE C MATRIX IN THE STATE SPACE DESCRIPTION.

• DMB A DUPLICATE OF GDMB WHICH IS PASSED TO THE SSVDC
0 SUBROUTINE. THIS MUST BE DONE BECAUSE THE MATRIX
0 RETURNED FROM SSVDC IS ALTERED FROM THE ORIGINAL
* MATRIX PASSED.

• E VECTOR THAT ORDINARILY CONTAINS ZEROES. IT IS USED
• IN THE SSVDC ROUTINE. FOR MORE INFORMATION CONSULT
• LINPACK USERS' GUIDE, DONGARRA, et.aI. CHPT 11.

• FA12 : A FLAG WHICH IS ZERO IF THE A12 SUBMATRIX IS ZERO
• AND ONE OTHERWISE.

• FA12S : A FLAG WHICH IS ZERO IF THE A12S SUBMATRIX IS ZERO
- AND ONE OTHERWISE.

• FCHND : A FLAG WHICH IS SET TO 1 WHEN CHAINED AGGREGATION IS

• PERFORMED AND 0 WHEN MODIFIED CHAINED AGGREGATION IS
• PERFORMED.

• F_NAME : CONTAINS THE NAME OF THE FILE WHERE THE (A,B,C) MATRICES
* ARE STORED.

• FRMT : CONTAINS THE FORMAT METHOD USED IN THE STORAGE OF THE
• PARTICULAR (A,B,C) MATRIX. a,A = SPARSE OR bB =

• NORMAL.

• G THE ARRAY USED TO STORE THE SUBMATRIX GENERATED DURING
• THE TRANSFORMATION OF THE B MATRIX. THIS SUBMATRIX IS

• THEN PLACED IN THE CORRECT LOCATION WITHIN B.

• GDMB A TEMPORARY ARRAY WHICH CONTAINS THE SUBMATRIX OF THE
• B MATRIX WHOSE ROWS ARE TO BE COMPRESSED.

• IERR VARIABLE CONTAINING ZERO WHEN THE SINGULAR VALUES HAVE
• BEEN COMPUTED CORRECTLY. SEE LINPACK USERS' GUIDE,
• CHPT. 11 WHEN IERR IS NOT EQUAL TO ZERO.

• INANE CHARACTER VARIABLE WHICH IS TE NAME OF THE FILE
• CONTAINING THE STAGE INFORMATION. IT IS NOT USED IF
• INFO IS FALSE.

• INFO A LOGICAL VARIABLE WHICH IS TRUE WHEN THE USER REQUESTS
STHE STAGE INFORMATION TO BE OUTPUT INTO A FILE.

• IJ,K INTEGER VARIABLES USED WITHIN DO LOOPS AS THE COUNTERS.
• ID.JD

/

so

• NAME A "'IARACTER VARIABLE USED TO IDENTIFY THE PARTICULAR
* MATRIX BEING INPUT INTO THE PROGRAM.

* NCBTMP AN INTEGER VARIABLE USED TO STORE THE NUMBER OF
* COLUMNS IN THE ORIGINAL B MATRIX WHEN CHAINED AGGREGATION
* IS PERFORMED.

* NC_ CONSTANT CONTAINING THE COLUMN DIMENSION OF THE PARTICULAR
* MATRIX (B,C,ETC.).

* NIDE KEEPS TRACK OF THE NUMBER OF NON-ZERO SINGULAR VALUES
* GENERATED BY COMPRESSING THE C MATRIX AND THE A12S
• SUBMATRICES. THIS IS THE NUMBER OF IDENTITY ELEMENTS
* NEEDED IN THE UPPER LEFT HAND CORNER WHEN UPDATING THE
• TRANSFORMATION MATRIX.

* NM CONSTANT CONTAINING THE MAXIMUM POSSIBLE DIMENSION OF THE
• MATRICES PASSED TO THE SINGULAR VALUE DECOMPOSITION
* ROUTINE (SSVDC). CURRENTLY SET EQUAL TO 100.

• NMIN AN INTEGER VARIABLE CONTAINING THE MINIMUM OF THE NUMBER
• OF COLUMNS OR THE NUMBER OF ROWS IN THE C MATRIX OR AN

• A12S SUBMATRIX.

* NMINB AN INTEGER VARIABLE CONTAINING THE MINIMUM OF THE NUMBER
• OF COLUMNS OR THE NUMBER OF ROWS OF THE B SUBMATRIX WHICH

* IS PASSED TO SSVDC. THIS IS THE MAXIMUM NUMBER OF NON-
* ZERO SINGULAR VALUES POSSIBLE FOR THE PARTICULAR SUBMATRIX

• NORM CONSTANT CONTAINING THE NORM OF THE ORIGINAL A MATRIX.

* NOZERO KEEPS TRACK OF THE NUMBER OF ZERO ROWS IN THE INPUT

• MATRIX.

* NR_ CONSTANT CONTAINING THE ROW DIMENSION OF THE PARTICULAR

* MATRIX (B,C,ETC.).

• NZ AN INTEGER CONTAINING THE NUMBER OF NON-ZERO SINGULAR
• VALUES RESULTING FROM A DECOMPOSITION OF THE C MATRIX
* OR AN A12 SUBMATRIX.

* NZB NUMBER OF NON-ZERO SINGULAR VALUES OBTAINED AFTER PASSING
* PORTIONS OF THE B MATRIX TO THE SSVDC ROUTINE.

* SIGMA VECTOR CONTAINING THE SINGULAR VALUES RESULTING FROM THE
* SSVDC ROUTINE.

* SIZA CONTAINS THE DIMENSION OF THE A MATRIX. INITIALLY IT IS
* SET EQUAL TO SOS, BUT THEN IS UPDATED TO KEEP TRACK OF THE
* DIMENSION OF THE A22 SUBMATRIX.

• SIZCHK CONSTANT CONTAINING THE PRODUCT OF NORM AND THE MACHINE

-7

81

* EPSILON. ELEMENTS SMALLER THAN THIS IN THE SSVDC ROUTINE
* ARE TREATED AS BEING ZERO.

* SOS CONSTANT CONTAINING THE DIMENSION OF THE STATE (SIZE OF
* STATE).

* STEP KEEPS TRACK OF THE NUMBER OF MODIFIED OR CHAINED STEPS
* PERFORMED.

* ARRAY CONTAINING THE TRANSFORMATION MATRIX WHICH IS
* CONTINUALLY UPDATED DURING THE ALGORITHM.

* TA12 TEMPORARY STORAGE ARRAY WHICH IS USED DURING THE
* COMPUTATION OF A12, SINCE A12 IS COMPUTED IN TWO STAGES.

* TDMB TEMPORARY STORAGE ARRAY WHICH IS USED DURING THE UPDATING
* OF THE TRANFORMATION MATRTIX, BECAUSE THE UPDATE MUST BE
* DONE IN TWO STAGES.

* ORTHOGONAL MATRIX WHOSE COLUMNS CONTAIN THE LEFT SINGULAR
* VECTORS OF THE MATRIX PASSED TO THE SSVDC ROUTINE.

* V ORTHOGONAL MATRIX WHOSE COLUMNS ARE THE RIGHT SINGULAR

* VECTORS OF THE MATRIX PASSED TO THE SSVDC ROUTINE.

* WORK VECTOR USED IN THE SSVDC ROUTINE.

* INITIALIZE THE COUNTING VARIABLES
NOZERO = 0
NIDE = 0
NM = 100
NZB = 0
STEP = 1

* FREQUENTLY USED FORMAT STATEMENTS
10 FORMAT (A)
50 FORMAT (100(F12.5))

WRITE (6,100)
100 FORMAT (/'*************** ****************

/'** MODIFIED OR CHAINED AGGREGATION **'

/ '***** ********e*e****.***********'

* INPUT THE SYSTEM MATRICES *

NAME = t*'C"o MATRIX. '
CALL INPUT(C, NRC, NCC, NAME, CFRMT, FCNAME)

* DETERMINE THE SMALLEST OF THE TWO DIMENSIONS

ol/

82

NMIN = MIN(NRC,NCC)

* INITIALIZE THE SIZE OF THE SYSTEM AND TE SIZE OF A
SOS = NCC
SIZA = SOS

NAME = 'A" MATRIX.'
CALL INPUT(ASOS,SOS,NAME,AFRMT,FANAME)

*

* SELECT THE NORM TO BE USED FOR THE A MATRIX.
625 WRITE (6,650)
650 FORMAT (/'ENTER TE NORM OF THE SYSTEM MATRIX, A.

' 1. LARGEST ELEMENT OF A '
/' 2. IWO-NORM (LARGEST SINGULAR VALUE)'
' 3. FROBENIUS NORM'

/' ENTER 1, 2, OR 3 >',i)

READ (5,*) I
IF (I .EQ. 3) GO TO 800
IF (I .EQ. 2) GO TO 750
IF (I .NE. 1) GO TO 625

* *FIND THE LARGEST ELEMENT OF A AND USE IRIS AS TME NORM.

NORM = 0.0
DO 700 J=I, SOS

DO 700 I=l, SOS
IF (ABS(A(I,3)) .GE. NORM) NORM = ABS(A(I,J))

700 CONTINUE
GO TO 850

* COMPUTE THE TWO NORM

CALL DUP(A,DMB.SOS,SOS)
750 CALL SSVDC(DMB.NM,SOS,SOS,SIGMA,E,U,NMV,NM,WORK,00.IERR)

IF (IERR .EQ. 0) GO TO 760
WRITE (6.755)

755 FORMAT (/'SINGULAR VALUES OF A NOT COMPUTED CORRECTLY'
/'SEE LINPACK MANUAL FOR CASE WHEN (IERR .NE. 0)')

STOP
*

760 NORM - SIGMA(I)
GO TO 850

* COMPUTE THE FROBENIUS NORM

800 NORM = 0
DO 825 I=1, SOS

DO 825 3=i, SOS
NORM = NORM + A(I,J)SA(I.J)

825 CONTINUE
NORM SQRT(NORM)

83

850 WRITE (6,860) NORM
860 FORMAT (/'THE NORM OF A EQUALS: ',F12.3)

* CALCULATE SIZCHK: ELEMENTS SMALLER hAN SIZCHK
* ARE TREATED AS ZEROES. (MACHINE EPSILON = 2.0**(-24))

SIZCHK = ABS(NORM*((2.0)**(-24)))
NAME P. B" MATRIX. '

CALL INPUT(B,NRBNCB,NAME,BFRMT,FBNAE)

900 CONTINUE

* CHOOSE BETWEEN PERFORMING MODIFIED OR CHAINED *

FCHND 0
950 WRITE (6.1000)
1000 FORMAT (/'DO YOU WANT TO PERFORM MODIFIED'

I 'OR CHAINED AGGREGATION?'
/' 1) MODIFIED'
I ' 2) CHAINED'
/'ENTER 1 OR 2 >'3)

READ (5,10) ANS
IF (ANS .EQ. '1') GO TO 2200
IF (ANS .EQ. '2') GO TO 2000

WRITE (6,1100)
1100 FORMAT (/'INCORRECT ENTRY.',//)

GO TO 950

2000 CONTINUE
* SET TE CHAINED FLAG

FCHND = 1

* STORE TEE NUMBER OF COLUMNS IN TEE ORIGINAL B
* IN A TEMPORARY NAME

NCBTMP = NCB
NCB = 1

* CREATE THE NEEDED NULL B MATRIX FOR CHAINED
DO 2100 I=1,NRB

B(I.1) = 0.0
2100 CONTINUE
2200 CONTINUE

* COMPRESS TEE COLUMNS OF THE C MATRIX *

* EVENTUALLY WE WILL ONLY NEED TO HAVE TEE V MATRIX RETURNED.
* FOR NOW WE WANT TO HAVE U AND V AVAILABLE FOR CHECKING PURPOSES.

CALL SSVDC(C.NM.NRC.NCC.SIGMAE,U,NMV,NM,WORK.11,IERR)

84

* COMPUTE THE NUMBER OF NON-ZERO SINGULAR VALUES.
" DISPLAY THE U AND V MATRIX IF YOU WISH.

NAME = 'THE C MATRIX'

CALL USV(U,SIGMAV,SIZCHK,NMIN,NZ,NRC,NCC,XAME)

* CHECK THE SIZE OF NZ FOR THE TRIVIAL CASE.
IF (NZ .EQ. 0) GO TO 60600

*******e~~~***e*e***e*************

• INITIALIZE THE TRANSFORMATION MATRIX *

DO 4000 I=1, oSOS
DO 4000 I=1,SOS

T(I,J)=V(J,I)

4000 CONTINUE
WRITE (6,4200)

4200 FORMAT (/'WOULD YOU LIKE TO SEE THE T MATRIX?',)
READ (5.10) ANS
IF ((ANS .NE. 'Y').AND.(ANS .NE. 'y')) GO TO 4500
CALL OUTPUT(T, SOS, SOS, SIZCHK)

4500 CONTINUE

• CHECK IF THE "C" MATRIX HAS RANK EQUAL TO THE ORDER OF THE SYSTEM.

IF (NZ .EQ. SOS) GO TO 60700
,
..**** ******** ***.a.** * *

• CALCULATE THE A12 SUBMATRIX *

• SET THE A12 FLAG EQUAL TO ZERO
FA12 =0
DO 5000 I=1,NZ

DO 5000 J=1,SIZA
TA12(I,J) = 0.0
DO 5000 K=l,SIZA

TA12(I,J) = TA12(I.J) + V(KI) * A(K,J)
5000 CONTINUE

DO 5500 I=1,NZ
DO 5500 J=I,SIZA - NZ

A12(I,J) = 0.0
ID = NZ + I
DO 5500 K=1,SIZA

A12(I,) = A12(I,) + TA!2(I,K) * V(KJD)
IF (ABS(AI2(I,J)) .GE. SIZCHK) FA12 = 1

5500 CONTINUE

WRITE (6.5600)
5600 FORMAT (/'WOULD YOU LIKE TO SEE THE A12 SUBMATRIX? >',3)

READ (5,10) ANS

7

85

IF ((ANS .NE. 'Y').AND.(ANS .NE. 'y')) GO TO 5850
CALL OUTPUT(A12,NZ, SIZA-NZ. SIZCHK)

5850 CONTINUE
* WAS A12 = 0 (FA2 = 0)

IF (FA12 .EQ. 0) GO TO 50000

5900 CONTINUE

* COMPUTE THE NEW B MATRIX *

DO 6000 I=1,SIZA

DO 6000 J=1,NCB
G(I,J) = 0.0
DO 6000 K=1,SIZA

G(IJ) = G(I,J) + V(K,I) * B(NIDE+K.J)
6000 CONTINUE

IF (FCHND .EQ. 1) GO TO 6450

WRITE (6,6050)
6050 FORMAT (/WOULD YOU LIKE TO SEE THE NEW PORTION OF B? >°,.)

READ (5,10) ANS -

IF ((ANS .NE. 'Y').AND.(ANS .NE. 'y')) GO TO 6150
CALL OUTPUT(Go SIZA, NCB, SIZCHK)

6150 CONTINUE
" STORE THIS UPDATED SECTION OF THE B MATRIX
" IN THE APPROPRIATE LOCATION OF THE ENTIRE B MATRIX.

DO 6200 I=1SIZA

ID = NIDE + I
DO 6200 J=I,NCB

B(ID,J) - G(.,J)
6200 CONTINUE

WRITE (6,6300)
6300 FORMAT (/'WOULD YOU LIKE TO SEE THE ENTIRE B MATRIX?)',t)

READ (5,10) ANS
IF ((ANS .NE. 'Y').AND.(ANS ,NE. 'y')) GO TO 6450
CALL OUTPUT(B, SOS.NCB, SIZCHK)

0

6450 CONTINUE
" CREATE A DUMMY MATRIX COMPOSED OF
" THE FIRST NZB+NZ ROWS OF B, STARTING
" WITH THE FIRST NON-ZERO ROW (NOZERO+I).

DO 6500 I=l.NZB+NZ
ID = NOZERO + I
DO 6500 J=1,NCB

GDiB(I,J) = B(IDJ)

86

6500 CONTINUE

IF (FCHND .EQ. 1) GO TO 6750

WRITE (6,6600)
6600 FORMAT (/'WOULD YOU LIKE TO SEE THE SUBMATRIX'

/'OF B WHICH IS TO BE DECOMPOSED? >',3)
READ (5,10) ANS
IF ((ANS .NE. 'Y').AND.(ANS .NE. 'y')) GO TO 6750
CALL OUTPUT(GDMB, NZB+NZ, NCB, SIZCHK)

1750 CONTINUE
NRGDMB = NZB + NZ
NMINB = MIN(NRGDMB,NCB)

CALL DUP(GDMB, DMB, NRGDMB, NCB)

* PASS THE DMB TO SSVDC TO COMPRESS ITS ROWS.
• ONLY RETURN TEE U MATRIX. WE DO NOT WANT TO OVER-
* WRITE THE CURRENT V MATRIX.

CALL SSVDC(DMBNMNRGDMBNCB,SIGMAE,U,NM.V,NM,WORK,10,IERR)

IF (FCND .EQ. 0) GO TO 6800
NZB = 0

• SKIP B AND T UPDATE

GO TO 10465

6800 CONTINUE
* COMPUTE THE NUMBER OF NON-ZERO SINGULAR VALUES.
" DISPLAY THE U MATRIX IF DESIRED.

NAME = 'A B SUBMATRIX.'

CALL USV(U, SIGMA,V, SIZCHK, NMINB, NZB, NRGDMB, NCB, NAME)

* CHECK TO SEE IF GDMB WAS EQUAL TO ZERO.
• IF SO, THEN SKIP TEE B AND T UPDATE.

IF (NZB .EQ. 0) GO TO 10465

• UPDATE THE B MATRIX *

* ZERO OUT THE APPROPRIATE ELEMENTS IN THE B MATRIX.
• THIS SUBMATRIX IS THE SIZE OF GDMB.

DO 10000 I=I.NRGDMB
ID = NOZERO + I
DO 10000 J=1,NCB

B(ID,J) = 0.0
10000 CONTINUE

xI

87

PERFORM THE TRANSFORMATION ON THE B MATRIX

* WITH ME U MATRIX, COMPRESSING THE ROWS OF
* THE NEW B DOWN.

DO 10100 I=l,NZB

ID - NOZERO + NRGDMB - NZB + I
DO 10100 =1,NCB

DO 10100 K=1,NRGDMB
B(ID,J) = B(ID,J) + U(KI) * GDMB(K,J)

10100 CONTINUE
S

WRITE (6,10150)
10150 FORMAT (/ 'WOULD YOU LIKE TO SEE THE TRANSFORMED B MATRIX'

/'AFTER THE APPROPRIATE ROWS HAVE BEEN COMPRESSED? >' ,>)
READ (5,10) ANS
IF ((ANS .NE. 'Y').AND.(ANS ,NE. 'y')) GO TO 10165
CALL OUJTPUT(B. SOS,NCB, SIZCBK)

*

10165 CONTINUE
S***** ********** * *****

* UPDATE THE TRANSFORMATION MATRIX *

THIS MUST BE DONE IN IWO STAGES, BECAUSE WE

* COMPRESS THE ROWS DOWN IN THE B SUBMATRIX.

* CALCULATE THE UPPER PART OF THE NEW T MATRIX.

DO 10210 I=1,NRGDMB-NZB
ID = NZB + I
DO 10210 J=1,SOS

TDNB(IJ) = 0.0
DO 10210 K=1,NRGDMB

TDMB(I.J) = TDMB(I,J) + U(KID) * T(NOZERO+KJ)
10210 CONTINUE
*

* CALCULATE IRE LOWER PART OF THE NEW T MATRIX.

DO 10220 I=1,,NZB

ID = NRGDMB - NZB + I
DO 10220 J=1,SOS

TDMB(ID,J) = 0.0
DO 10220 K=1,NRGDMB

TDMB(ID.J) = TDMB(IDJ) + U(K,I) * T(K+NOZERO.J)
10220 CONTINUE
S

WRITE (6,10250)
10250 FORMAT (/'WOULD YOU LIKE TO SEE THE UPDATED ROWS IN T'

/'DUE TO THE U GENERATED WHILE COMPRESSING THE'
/'ROWS OF B? >',)

READ (5,10) ANS
IF ((ANS .NE. 'Y').AND.(ANS .NE. 'y')) GO TO 10265

mom

88

CALL OUTPUT(TDMB.NRGDMB, SOS,SIZCHK)

10265 CONTINUE

• STORE TDMB IN THE APPROPRIATE LOCATION WITHIN T

DO 10300 I=,NRGDMB
ID = NOZERO + I
DO 10300 J=lSOS

T(IDJ) = TDMB(I,J)
10300 CONTINUE

WRITE (6,10350)
10350 FORMAT (/'WOULD YOU LIKE TO SEE THE NEW T?)',t)

READ (5,10) ANS
IF ((ANS .NE. 'Y').AND.(ANS .NE. 'y')) GO TO 10365
CALL OUTPUT(T, SOS, SOS, SIZCRK)

10365 CONTINUE
S

****** ************************************

• UPDATE THE A12 SUBMATRIX WITH THIS U *
* STATE SPACE TRANSFORMATION. *

iS

* A12 WILL BE DIVIDED INTO TWO PARTS, A12B AND A12S.
• CALCULATE A12B.

DO 10400 I=1,NZB
DO 10400 J=1,SIZA-NZ

A12B(I,J) = 0.0
DO 10400 K=1,iNRGDMB

A12B(I,J) = A12B(I,J) + U(K.I) * A12(K,J)

10400 CONTINUE

WRITE (6.10450)

10450 FORMAT (/'WOULD YOU LIKE TO SEE THE A12B SUBMATRIX? >',t)
READ (5,10) ANS
IF ((ANS .NE. 'Y').AND.(ANS .NE. 'y')) GO TO 10465
CALL OTJTPUT(A12B,NZB. SIZA-NZ, SIZCHK)

10465 CONTINUE

• CALCULATE A12S.
• SET THE A12S=O FLAG EQUAL TO ZERO.

FA12S = 0
DO 10500 I=1,NRGDMB - NZB

ID = NZB + I
DO 10500 J=1,SIZA-NZ

A12S(I,J) = 0.0
DO 10500 K=1,NRGDMB

A12S(I.J) = A12S(I,J) + U(K.ID) * A12(K,J)
IF (ABS(A12S(IJ)) .GT. SIZCHK) FA12S = 1

10500 CONTINUE

l1

89

WRITE (6,10550)
10550 FORMAT (/'WOULD YOU LIKE TO SEE TE A_12S SUBMATRIX? >'3t)

READ (5,10) ANS
IF ((ANS .NE. 'Y').AND.(ANS .NE. 'y')) GO TO 10565
CALL OUTPUT(AI2S,NRGDMB-NZB. SIZA-NZ, SIZCHX)

10565 CONTINUE
*

IF (FA12S .EQ. 0) GO TO 50200

• CALCULATE THE A22 SUBMATRIX. *

• TA12 IS USED AS THE INTERMEDIATE STORAGE LOCATION.

DO 10600 I=1,SIZA-NZ
ID = NZ + I
DO 10600 J=1,SIZA

TA12(I.J) = 0.0
DO 10600 K=1,SIZA

TA12(IJ) = TA12(I,3) + V(K,ID) • A(KJ)
10600 CONTINUE

• STORE TE A22 SUBMATRIX IN THE UPPER LEFT HAND
• CORNER OF THE A MATRIX.

DO 10700 rIaSIZA-NZ
DO 10700 J=1,SIZA-NZ

JD = NZ + J
A(IJ) = 0.0
DO 10700 K=1,SIZA

A(IJ) = A(IJ) + TA12(I,K) • V(KJD)
10700 CONTINUE
a

WRITE (6,10750)
10750 FORMAT (/'WOULD YOU LIKE TO SEE THE A22 SUBMATRIX? >',3)

READ (5,10) ANS
IF ((ANS .NE 'Y').AND.(ANS .NE. 'y')) GO TO 10760
CALL OUTPUT(A. SIZA-NZ, SIZA-NZ, SIZCHK)

10760 CONTINUE

* UPDATE TE SIZA VARIABLE TO BE TE SIZE OF -HE

* NEW A22 SUBMATRIX.

SIZA = SIZA - NZ

• UPDATE TE VARIABLE REPRESENTING THE NUMBER OF
* IDENTITY ELEMENTS. (THIS VARIABLE IS USED DURING
* THE T UPDATE WITH V.)

NIDE = NIDE + NZ

7 AD-A142 394 A NUMERICAL ALGORITHM
FOR CHAINED AGGREGATION

AND
MODIFIED CHAINED AGGREGATION(U) ILNOIS UNIV AT URBANA
DECISION AND CONTROL LAB H S THARP SEP 83 DC-62

UNCLASSIFIED N00014-79-C-0424 F/G 12/1 NL

IIIIIIIIII4
IIII

1.0 2.0

III1.25 h ~ t16

90

* IDENIP-ICATION OF STEP TO USER

* INDICATE TO USER WHAT STEP IN THE DECOMPOSITION
H HE IS IN.

NAME
IF (FCHND .EQ. 0) NAME = 'MODIFIED'
WRITE (6,10770) STEP , NAME

10770 FORMAT (/**
/'THIS COMPLETES ',13,' STAGE(S) OF ',A8,
/ 'CHAINED AGGREGATION.')

WRITE (6,10772) NIDE , NIDE
10772 FORMAT (/'THE AGGREGATE SYSTEM IS NOW ',13,' x '.13,

/ ' ***********eee*~~e~ee*****s********e',)

IF (STEP .NE. 1) GO TO 10780
WRITE (6,10774)

10774 FORMAT (/'WOULD YOU LIKE THIS INFORMATION TO BE'
I'WRITTEN OUT TO A FILE? >',3)

READ (5,10) ANS
IF ((ANS .EQ. 'Y').OR.(ANS .EQ. 'y')) GO TO 10775
INFO = .FALSE.
GO TO 10780

10775 INFO = .TRUE.
WRITE (6,10776)

10776 FORMAT (/'ENTER THE FILE NAME >',)
READ (5,10) INAME
OPEN (UNIT=-3 ,FILE=INAME)
REWIND 3
WRITE (3,10778)

10778 FORMAT ('THIS FILE CONTAINS IRE INFORMATION ON'
/'HOW THE AGGREGATE SYSTEM GROWS WITH'
I 'EACH STEP OF MODIFIED CHAINED AGGREGATION.' ,)

CLOSE (UNIT=3)

10780 IF (.NOT. INFO) GO TO 10790
OPEN (UNIT=3,FILE INAME)
WRITE (3,10785) STEP , NIDE , NIDE

10785 FORMAT (/'AFTER ',13,' STAGE(S) OF MODIFIED CHAINED'
I'AGGREGATION, THE AGGREGATE SYSTEM IS'
/,13,' x ',I3)

10790 CONTINUE
STEP =STEP + 1

* COMPRESS THE COLUMNS OF A12S *

* WILL RETURN BOTH U AND V MATRICES FOR NOW.

91

NVL12S - NRGDIB - NZB
* RECALL NCA12S - SIZA.

CALL SSVDC(A12S.NMNRA12SSIZA, SIGiA,EU, NM,V,NM,WORK,11,IERR)

NAME - 'THE A12S SUBMATRIX.'
NKIN - MIN(NRA12SSIZA)

CALL USV(U, SIGMAV, SIZCHI,NMIN,NZ,NRA12S, SIZA, NAME)

* IF NZ EQUALS SIZA THEN THE SYSTEM WILL NOT AGGREGATE.
* THIS IS BECAUSE A12S HAS FULL COLUMN RANK.

IF (NZ .EQ. SIZA) GO TO 60800

* UPDATE T

" DO THE UPDATE IN T1W0 STEPS.
" COMPUTE AFFECTED ROWS OF T.

DO 10800 I=1,SIZA
DO 10800 J=1,SOS

TDMB(IJ) = 0.0
DO 10800 K=1,SIZA

TDMB(I.J) = TDMB(I,J) + V(KI) * T(NIDE+K.J)

10800 CONTINUE

* STORE THESE AFFECTED ROWS IN THE APPROPRIATE LOCATION

• WITHIN T.

DO 10900 I-1.SIZA
ID = NIDE + I
DO 10900 J-1,SOS

T(IDJ) - TDMB(I.J)
10900 CONTINUE

WRITE (6,10950)
10950 FORMAT (/'WOULD YOU LIKE TO SEE THIS NEW T

/AFTER BEING UPDATED WITH V? >'°t)
READ (5,10) ANS
IF ((ANS .ME. 'V').AND.(ANS .ME. 'y')) GO TO 10970
CALL OXTPUT(T, SOS, SOS, SIZCIK)

10970 CONTINUE

• COMPUTE THE NEW A12 SUBMATRIX *

* SET IRE A12-0 FLAG TO ZERO.
FA12 - 0

7

92

* CALCULATE TRE UPPER HALF OF THE A12 SUBMATRIX.

DO 11000 I-1,lMB
DO 11000 J=1,SIZA-NZ

JD = NZ + J
A12(I,3) = 0.0
DO 11000 K=1.SIZA

A12(I.) - A12(I,3) + A12B(I°K) * V(K,3D)
IF (ABS(A12(I,J)) .GT. SIZCHK) FA12 - 1

11000 CONTINUE

* CALCULATE THE LOWER HALF OF THE A12 SUBMATRIX IN
I WO SECTIONS.

DO 11100 I=1,NZ
DO 11100 Jul.SIZA

TA12(I,3) = 0.0
DO 11100 K-ISIZA

TA12(IJ) - TA12(I,J) + V(K,I) * A(KJ)
11100 CONTINUE

DO 11200 I=1,NZ
ID = NZB + I
DO 11200 3=1,SIZA - NZ

JD = NZ + 3
A12(IDI) = 0.0
DO 11200 K=1,SIZA

A12(ID.,) = AM2(ID,J) + TA12(I,K) * V(K.JD)
IF (ABS(A12(ID.J)) .GT. SIZCHK) FA12 - 1

11200 CONTINUE

WRITE (6,11250)
11250 FORMAT (/WOULD YOU LIKE TO SEE THE NEW A12 SUBMATRIX? >',*)

READ (5,10) ANS
IF ((ANS .NE. 'Y').AND.(ANS .NE. 'y')) GO TO 11270
CALL OUTPUT(A12,NZB+NZ, SIZA-NZ, SIZCEK)

11270 CONTINUE

* CHECK TO SEE IF A12=0. IF SO, SYSTEM AGGREGATES.
IF (FA12 .EQ. 0) GO TO 50000

• UPDATE HE VARIABLE REPRESENTING TEE NUMBER OF ZERO
• ROWS IN TNE B MATRIX.

NOZERO = NIDE - NZB

• CONTINUE THE PROCESS OF MODIFIED CHAINED AGGREGATION. *

40900 GO TO 5900

i 7

* PROGRAM EXITS *

50000 WRITE (6,50100)
50100 FORMAT (/'PROGRAM EXIT. SYSTEM AGGREGATES.'

/'TIE A12 SUBMATRIX - 0.')
GO TO 70000

S

50200 WRITE (6.50250)
50250 FORMAT (/'PROGRAM EXIT. SYSTEM WILL AGGREGATE.'

I'THE MATRIX A12S - 0.')
.GO TO 70000

S

**** 5*5 5*555 5555*55555*****5*** 55 55**5 55555 5

PROGRAM EXITS ASSOCIATED WITH NO AGGREGATION. *

60600 WRITE (6,60650)
60650 FORMAT (/'PROGRAM EXIT. TRIVIAL CASE'

I'TNE C MATRIX IS ZERO.')
GO TO 80000

S

60700 WRITE (6,60750)
60750 FORMAT (/'PROGRAM EXIT. SYSTEM WILL NOT AGGREGATE.'

/'TEE C MATRIX HAS A RANK EQUAL TO THE'
I'DIMENSION OF THE SYSTEM.')

GO TO 70000

60800 WRITE (6,60850)

60850 FORMAT (/'PROGRAM EXIT. SYSTEM WILL NOT AGGREGATE.'
/'THE A12S SUBMATRIX HAS FULL COLUMN RANK.')

GO TO 70000

70000 CONTINUE
WRITE (6,70100)

70100 FORMAT (/'WOULD YOU LIKE TO SEE TRE TRANSFORMED'
/'SYSTEM MATRICES? >',[)

READ (5,10) ANS
IF ((ANS .NE. 'Y').AND.(ANS .NE. 'y')) GO TO 80000

* COMPUTE THE TRANSFORMED A MATRIX.

CALL MULT(T.o 0 .AFRT, FANAME, SOS, SOS,A, 1 ,AFRMT,FANAME, SOS, SOS,TOMB)
DO 70200 1-1,SOS

DO 70200 J-1,SOS
DB(,T) - T(3,I)

70200 CONTINUE

CALL MULT(TDIB , 0. ,AFMT, FANAME, SOS. SOS, DM9 . 0 ,AFRIT. FANAME, SOS,
SOSA)

.m m

94

WRITE (6,70300)
70300 FORMAT (/'THIS IS TIE TRANSFORMED "A" MATRIX:')

CALL OUTPUT(A, SOS, SOS, SIZCHK)

* COMPUTE THE TRANSFORMED "B" MATRIX.

IF (FCHID .EQ. 1) NCB = NCBTP

CALL MULT(T,OBFRT,PFBNAMESOS,SOS,B,1,BFRT,FBNAMESOSNCB,G)
S

WRITE (6.70400)
70400 FORMAT (ITHIS IS THE TRANSFORMED "B" MATRIX.')

CALL OUTPUT(G, SOS,NCB, SIZCHK)

* COMPUTE THE TRANSFORMED "C" MATRIX.
* (RECALL DNB IS THE TRANSPOSE OF THE "T" MATRIX.)
S

CALL MCJLT(C, 1, CFRMT, FCNAME, NRC, NCC, DM5, 0 ,CFRJT, FCNAME,
SOS, SOS. TOMB)

WRITE (6,70500)
70500 FORMAT (/'THIS IS TIE TRANSFORMED "C" MATRIX.')

CALL OUTPUT(TDNB,NRC.NCC, SIZCHK)

WRITE (6.70600)
70600 FORMAT (/'WOULD YOU LIKE TO SEE THE FINAL "r, MATRIX? >'.s)

READ (5,10) ANS
IF ((ANS .NE. 'Y').AND.(ANS .NE. 'y')) GO TO 70800

CALL OUTPUT(T, SOS, SOS, SIZCHK)

70800 WRITE (6,70900)
70900 FORMAT (/'WOULD YOU LIKE TO SEE ME FINAL "T" TRANSPOSE'

/'MATRIX? >',*)
READ (5,10) ANS
IF ((ANS .NE. 'Y').AND.(ANS .NE. 'y')) GO TO 80000

S

CALL OUTPUT(DMB, SOS, SOS, SIZCHK)

30000 CONTINUE
STOP
END

* SUBROUTINES USED IN PROGRAM ABOVE *
55* SeeS g***.* S*55 SSSSS SeeS*SSS5** 555*
S

* SUBROUTINE USV *

* THIS SUBROUTINE COMPUTES HIE NUMBER OF NON-ZERO

1 7

95

" SINGULAR VALUES ASSOCIATED WITE A DECOMPOSED
" AMLTI. IT ALSO ASKS IF YOU WOULD LIKE TO SEE
" TRE U AND/OR V MmIi CREATED DURING T E DECOMPOSITION,
" DEPENDING ON VHER IN 7MU PROGRAM USV IS CAL .

SUBROUTINE USV(U, SIGNAV. SIZCHK.N1 , N, I , NC. TYPE)
CARACIER0i ANS
C(AR&TCER020 TYPE
REAL U(100.100) ° V(100,100) , SIGA(100)
IEAL sIzrox
INTEGER KIN ,N ,NR ,NC
INTEGER I ISIR

SFORMAT STATEMNTS USED

910 FORMAT (A)
950 FORMAT (100(F12.5))

WRITE (6.990) TYPE
990 FORMAT (/'UTHIS DECOMPOSITION IS OF ',A)

WRITE (6,1000)
1000 FORMAT (/'WOULD YOU LIKE TO SEE TE U MAThII? >',i)

READ (5,910) ANS
IF ((ANS .NE. 'Y').AND.(ANS .NE. 'y')) GO TO 2050

S

WRITE (6,1500)
1500 FORMAT (('iRE CORRESPONDING U MATRIX IS:')

CALL DSPLAY(U. NR. NR)

2050 CONTINUE
S

WRITE (6,2100)

2100 FORMAT (/I O SINGULAR VALUES ARE:)
WRI7E (6,950) (SIGMA(I),I-1,MIN)

S CHEC THE MAGNITUDE OF In SINGULAR VALUES
N-0
DO 2200 1-1 ,kIN
IF (SIGMA(I).LT.SIZCHK) GO TO 2300
N-N+1

2200 CONTINUE

2300 WIM (6.2350) N
2350 FORMAT (I7119 NUIMER OF INDEPENDENT COLUMNS IN'

/,HU DECOMPOSED HMTI IS: ',15)

IF (TPE .BQ. 'A SUBIMAT1.') GO TO 3050
WRITE (6.2400)

2400 FORMAT (/'WOULD YOU LIKE TO SEE U V MAMTIX?)',*)
READ (5,910) ANS
IF ((ANS .NK. 'Y').AND.(ANS .NZ. 'yl)) GO TO 3050

WRITE (6.2500)

6

2500 FORMAT (/'THE CORRESPONDING V MATRIX IS:')
CALL DSPLAY(V.NCNC)

S

3050 CONTINUE
S

WRITE (6,3500) IERR
3500 FORMAT (/IERR EQUALS *,14)

RETURN
END

* SUBROUTINE DUP s

* THIS SUBROUTINE DUPLICATES A MATRIX. THIS IS NEEDED
* SINCE WHEN A MATRIX IS PASSED TO SSVDC IT RETURNS IN
* AN ALTERED FORM.

SUBROUTINE DUP(SOURCE,DUMMY, NROW. NCOL)

REAL SOURCE(00,l00) , DUMMY(100,100)
INTEGER NROW , NCOL
INTEGER I .I

DO 1000 I=i,NROW
DO 1000 Jf1,NCOL

DUMMY(I,J) = SOURCE(IJ)
1000 CONTINUE

RETURN
END

* SUBROUTINE OUTPUT *

* THIS SUBROUTINE ALLOWS THE USER TO SEE THE
* PARTICULAR MATRIX ON THE SCREEN IN EITHER F6.3
* FORMAT OR SIMPLY AS X's AND O's (IF THE STRUCTURE
* IS ALL THAT IS DESIRED). THE USER MAY ALSO OUTPUT

IRTE MATRIX TO A FILE IN EITHR OF THESE FORMATS.
* THE USER MUST SUPPLY THE FILENAME TO BE USED.

SUBROUTINE OUTPUT(X,NROWNCOL, SIZCHK)
CH2ARACTER 1 ANS
CHARACTER01 XC(100,100)
CHARACTER*20 FNAME
REAL X(100.100) , SIZCHK
INTEGER I ,I
INTEGER NROW , NCOL
INTEGER FORM
LOGICAL FOUT

* FREQUENTLY USED FORMAT STATEMENTS.

97

10 FORMAT (8(F9.3,1X))
1s FORMT (7(915.7.11))
20 FORMAT (A)
30 FORMAT (40(A,21))

5o WRI7E (6,100)
100 FORMAT (I'WHAT FORMAT DO 7OU WISH 70 SEE'

P1HIS MATRIX IN?'
/ ' 1) NUME]ICAL VALUES'
IP 2) STRUC RlE ONL (X AND 0)'

'N! 1 OR 2)

READ (5,150) FORM
150 FORMAT (I1)

WRITE (6,200)
200 FORMAT (/'WOULD YOU LIM 1IS MATRIX SIORED'

PIN A PILE?).3)

READ (5.20) ANS
IF ((ANS .E. 'Y').OL.(ANS .EQ. 'y')) (30 TO 275
OUT - .FALSE.

GO TO 400

275 WRTlE (6,300)
300 FORMAT (,ENTER IRE FILENAME FOR THIS MATRIX >,)

READ (5,20) FNANE
OUT- .TRUE.

S

400 IF (FORM .BQ. 1) GO TO 500
IF (FORM .EQ. 2) 00 IO 1000
WRITE (6,450)

450 FORMAT (/INCOWREC' ENTRY(S).'.//)
GO TO 50

500 CALL DSPLAX(XNRWNCOL)
IF (.NOT. POUT) R3URN

600 OPEN (UNIT-1 ,FILE-FNAM)
REWIND 1
WRITE (1,S) NIOW , NCOL
DO 650 I-1,NROW

WRI79 (1,15) (Z(1.3), 3-,NCOL)
650 CONTINUE

(LOSE (UNIT-i)
RETURN

1000 DO 1050 I-1.NRM
DO 1050 J-1,NCOL

XC(I,J) - '0.
IF (ABS(I(I,)) .GT. SIZCRK) IC(I) " '1'

h-

98

1050 CONTINUE
S

IF (FOUT) GO TO 1300
DO 1100 I- INROW

WRITE (6.30) (XC(I.J),J=lNCOL)
1100 CONTINUE

RETURN

1300 OPEN (UNIT=1.FILE=FNAME)
REWIND 1
DO 1400 I=1.NROW

WRITE (6,30) (XC(IJ),J=1,NCOL)

WRITE (1,30) (XC(I,3),J=l,NCOL)
1400 CONTINUE

CLOSE (UNIT=l)
RETURN
END

* SUBROUTINE INPUT *

• THIS SUBROUTINE READS IN THE APPROPRIATE MATRIX FROM
• A DATA FILE. THE MATRIX MAY BE STORED IN NORMAL FORM
* OR AS A SPARSE MATRIX. YOU ARE ALSO ALLOWED THE ABILITY

• TO VERIFY THE MATRIX READ IN.

SUBROUTINE INPUT(X, NROW, NCOL, TYPE, FRT, FNAME)
CHARACTER0I ANS , FRMT
CHARACTER*20 FNAME , TYPE
REAL X(1001100)
INTEGER I .1
INTEGER NROW . NCOL
INTEGER NR . NC

WRITE (6,200) TYPE
200 FORMAT (/'ENTER TE NAME OF THE DATA FILE FOR THE ',Al1,' >',3)

READ (5,300) FNANE
300 FORMAT (A)

IF (TYPE .EQ. '"A" MATRIX.') GO TO 252
WRITE (6,250) TYPE

250 FORMAT (/'ENTER THE DIMENSIONS OF THE ',A10,' (ROWS x COLS). >',)
READ (5.*) NROW,NCOL

252 WRITE (6.255)
255 FORMAT (/'WAT FORMAT IS THIS MATRIX IN?'

/' A) SPARSE'
/' B) NORMAL'
I' ENTER A OR B >'3*)

READ (5.300) FRMT
IF ((FRMT .EQ. 'A').OR.(FRMT .EQ. 'a')) GO TO 310
IF ((FRT .EQ. 'B').OR.(FRMT .EQ. 'b')) GO TO 305
GO TO 252

V

99

305 OPEN (UNIT-1 ,FILEIFNAME)
REWIND 1
READ (1,*) NR . NC
IF ((NR .EQ. Nl0W).AND.(NC .EQ. NCOL)) GO TO 307
WRITE (6,306)

306 FORMT (/PROGAM ELITI MAIX DIMENSIONS WHICH WERE'
/'INPUT AND THOSE IN TE DATAFILE DO NOT AGREE.')

STOP
307 READ (1.0) ((1(I,3),J-1,N0OL)I,-1,NRI)

CLOSE (UNIT-1)
GO TO 350

S

S

310 DO 308 I=1 ,NROW
DO 308 J-1,NCOL

X(I,j)-O.0
308 CONTINUE
0

OPEN (UNIT-1 ,FILE-NAME)
REWIND 1

312 READ (1,*,END-350) I , 3 , (1,3")
GO TO 312

0

350 WRITE (6,360) TYPE
360 FORMAT (/DO YOU WANT TO VERIFY TE ',A1O,'? >',)

READ (5,300) ANS
IF ((ANS.NE.'Y').AND.(ANS.NE. 'y')) RETURN
WRITE (6,400) TYPE

400 FORM (/'THE FOLLOWING ',A1O,' WAS READ IN:')
CALL DSPLAY (NROW, NCOL)

1000 CONTINUE

RETURN
END

* SUBROUTTINE WULT *

* THIS SUDROTINE MULTIPLIES TWO MATRICES TOGETHER AND

SRETURNS TE RESULT IN P. ONE OR BOTH OF TE FILES MAY
* HAVE TO BE READ IN FROM DATAFILES, THIS OPTION IS CON--
* TROLLED BY A FLAG FOR EACH MATRIX.
* 1 MEANS READ TE FILE IN FROM A DATAFILE.
* 0 MEANS TEE MATRIT WAS PASSED IN THE CALL.
S*FRMT INDICATES THE FORMAT TE PARTICULAR
• MATRIX IS STORED IN.

SUBROUTINE IULT(X. IF. ZFRMNAIEN. N, Y, YF.YTFINANE, NRI,
NCY.P)

CHARACTER1 IFRT , IFRIT
CHARACTERo20 NAIS ,YNAXE

100

LOGICAL XF YF
INTEGER I I I K
INTEGER NRX ,NRY ,NaX Ncy
INTEGER RD ,CD

REAL X(100,100), Y(100,100), P(100,100)

IF (NCX .EQ. NRY) GO TO 50
WRITE (6,30)

30 FORMAT (/'THE MATRICES ARE NOT (OMPATABLEI')
STOP

* DOES THE MATRIX NEED TO BE READ IN FROM A DATA FILE?

50 IF (.NOT.XF) GO TO 500

• WHAT FORMAT IS TEE MATRIX IN? (A=SPARSE.B=NORMAL)

IF ((XFRMT .EQ. 'A').OR.(XFRT .EQ. 'a')) GO TO 300
IF ((XFRMT .EQ. 'B').OR.(XFRMT .EQ. 'b')) GO TO 200
WRITE (6,100)

100 FORMAT (/'TEE I MATRIX IN 71E MULT SUBROUTINE'
/'PWAS NOT ASSIGNED A FORMAT TYPE')

STOP

200 OPEN (UNIT=1,FILE=XNAME)
REWIND I
READ (1,*) RD , CD
READ (1,') ((X(I,J),J=1.NCX).I=1,NRX)
CLOSE (UNIT=l)
GO TO 500

300 DO 350 I=1,NRX
DO 350 J=1.NCI

X(I.J) = 0.0
350 CONTINUE

OPEN (UNIT=1,FILEXNAME)
REWIND 1

360 READ (1,*,END=500) I , I , (I,3)
GO TO 360

• DOES THE Y MATRIX NEED TO BE READ IN FROM A DATAFILE?

500 IF (.NOT.YF) GO TO 1000

• WHAT FORMAT IS THE "Y" MATRIX IN? (A=SPARSEB=NORMAL)

IF ((YFRMT .EQ. 'A').OR.(YFRMT .EQ. 'a')) GO TO 800
IF ((YFRMT .EQ. 'B').OR.(YFRMT .EQ. 'b')) GO TO 600
WRITE (6.550)

550 FORMAT (/'THE "Y" MATRIX IN ME MULT SUBROUTINE'
/'WAS NOT ASSIGNED A FORMAT TYPE')

STOP

- i -, ,= ,,El I I i i i l. . . .

101

600 OPEN (UNIT-i ,FILE-YNAIE)
REWIND 1
2EAD (1,*) RD , CD
READ (1,*) ((Y(I,3),.T-1,NCY).I-1,NRY)
CLOSE (UNIT-i)
GO 11 1000

800 DO 850 I-1,NY

DO 850 J-1,NCY
Y(I,) - 0.0

850 CONTINUE

OPEN (UNIT-iFILE-YNAME)
REWIND 1

860 READ (1,*,END-1000) I , I , Y(IJ)
GO TO 860

1000 DO 1200 I-1,NRX
DO 1200 J-1,NCY

P(I,,) - 0.0
DO 1200 K=-,N(X

P(I.T) P(I,X) + I(I,K)'Y(K,I)
1200 CONTINUE

RETURN
END

* SUBROUTINE DSPLAY *

* THIS SUBROUTINE ALLOWS A MATRIX TO BE
* DISPLAYED ON TE TERMINAL SCREEN IN
* GROUPS OF 8 COLUMNS.
S

SUBROUTINE DSPLAY (X, NROW, NCOL)
INTEGER I , I , START
INTEGER NROW , NCOL , FINISH
REAL X(100,100)

START - 1
FINISH - 8

100 IF (FINISH .GE. NCOL) FINISH - NCOL
WRITE (6,150) START , FINISH

150 FORMAT (I' COLS. ',13.' TO ',13)
DO 200 1-1, NlOW

WRITE (6,175) (X(I,J),-START,FINISH)
175 FORMAT (8(F9.3,11))
200 CONTINUE

IF (FINISH .GE. NCOL) GO TO 300
START - START + 8
FINISH - FINISH + 8
GO TO 100

102

300 RETURN
END

• THE FOLLOWING ROUTINES HAVE BEEN TAKEN *
" FROM THE LINPACK MATHEMATICAL SOFTWARE. *

SUBROUTINE SSVDC(X,LDX.N.P,SE,ULDU,V,LDV,WORK,JOBINFO)
INTEGER LDX,N,PLDU,LDV.JOB.INFO
REAL X(LDX,1),S(1),E(1),U(LDU,1),V(LDV,1),WORK(1)

C
C
C SSVDC IS A SUBROUTINE TO REDUCE A REAL NXP MATRIX X BY
C ORTHOGONAL TRANSFORMATIONS U AND V TO DIAGONAL FORM. THE
C DIAGONAL ELEMENTS S(I) ARE THE SINGULAR VALUES OF X. THE
C COLUMNS OF U ARE THE CORRESPONDING LEFT SINGULAR VECTORS,
C AND THE COLUMNS OF V THE RIGHT SINGULAR VECTORS.
C
c ON ENTRY
C
C X REAL(LDX,P), WHERE LDX.GE.N.
C X CONTAINS THE MATRIX WHOSE SINGULAR VALUE
C DECOMPOSITION IS TO BE COMPUTED. X IS
C DESTROYED BY SSVDC.
C
C LDX INTEGER.
C LDX IS THE LEADING DIMENSION OF THE ARRAY X.
C
C N INTEGER.
C N IS THE NUMBER OF COLUMNS OF THE MATRIX X.
C

C P INTEGER.
C P IS THE NUMBER OF ROWS OF THE MATRIX X.
C
C LDU INTEGER.
C LDU IS THE LEADING DIMENSION OF THE ARRAY U.
C (SEE BELOW).
C
C LDV INTEGER.
C LDV IS TRE LEADING DIMENSION OF THE ARRAY V.
C (SEE BELOW).
C
C WORK REAL(N).
C WORK IS A SCRATCH ARRAY.
C
C JOB INTEGER.
C JOB CONTROLS ItHE COMPUTATION OF THE SINGULAR
C VECTORS. IT HAS THE DECIMAL EXPANSION AB
C WITH THE FOLLOWING MEANING
C
C A.EQ.0 DO NOT COMPUTE THE LEFT SINGULAR
C VECTORS.

7

103

C A.EQ.1 RETURN THE N LEFT SINGULAR V CT RS
C IN U.
C A.GE.2 RETUL ME FIRST KIN, %.P, sw1jN(A
C VECTORS IN U.
C B.EQ.O DO NOT COMPUT ThE RIGUT '5 !. (,JAM
C VECTORS.
C B.EQ.1 RETURN THE LIGHT SINGULUA vkh .N.
C IN V.
C
C ON RETURN
C
C S RIEAL(MM), WHERE KI,-MIN(N,1.P)
C IKE FIRST MIN(NP) ENTRIES OF S LMNTAL'i IREk
C SINGULAR VALUES OF I ARRANGED IN DESCEND LN

C ORDER OF MAGNITUDE.
C
C E REAL(P).
C B ORDINARILY CONTAINS ZEROS. BOWEVER SEE THE
C DISCUSSION OF INFO FOR EXCEPTIONS.
C
C U REAL(LDU,K), WHERE LDU.GE.N. IF JOBA.EQ.1 ITEN
C I.EQ.N, IF JOBA.GE.2 THEN
C I.EQ.MIN(NP).
C U CONTAINS NHE MATRIX OF RIGHT SINGULAR VECTORS.
C U IS NOT REFERENCED IF J3&A.EQ.0. IF N.LE.P
C OR IF JOBA.BQ.2. TEN U MAY BE IDENTIFIED WITH I
C IN TE SUBROUTINE CALL.

C
C V REAL(LDVP), WHERE LDV.GE.P.
C V CONTAINS THE MATRIX OF RIGHT SINGULAR VECTORS.
C V IS NOT REFERENCED IF JOB.EQ.O. IF P.LE.N,
C THEN V MAY BE IDENTIFIED WI1H I IN IE
C SUBROUTINE CALL.
C
C INFO INTEGER.
C NHE SINGULAR VALUES (AND THEIR CORRESPONDING
C SINGULAR VECTORS) S(INFO+1),S(INFO+2),...,S(M)
C ARE CORRECT (HERE M-MIN(N.P)). THUS IF
C INFO.EQ.0. ALL THE SINGULAR VALUES AND TEIR
C VECTORS ARE CORRECT. IN ANY EVENT, NHE MATRIX
C B - TRANS(U)*X1V IS NHE BIDIAGONAL MATRIX
C WIH THE EEMENTS OF S ON ITS DIAGONAL AND NE
C ELEMENTS OF E ON ITS SUPER-DIAGONAL (TRANS(U)
C IS NE TRANSPOSE OF U). THUS NE SINGULAR
C VALUES OF I AND B ARE TE SAME.
C
C LINPACK. THIS VERSION DATE 03/19/79
C G.W. STEWART, UNIVERSITY OF MARYLAND, ARGONNE NATIONAL LAB.
C
C *s USES TE FOLLOWING FUNCTIONS AND SUBPROGRAMS.
C
C EXTERNAL SROT
C BLAS SAIPY, SDOT, SSCAL, SSWAP, SNRM2 , SROT

L7

104

C FORTRAN AB S, AMAX1, MAX MINOMODDSQRT
C
C INTERNAL VARIABLES
C

INTEGER I, ITERJJOBU,KoKASE,IX,LDLLLLS,LM1,LP1,LSLUo.,MAXIT
* MoMM ,MP1 ,NCT,NCTP1 ,NCU, NRT, NRTP1
REAL SDOTTR
REAL BC.CSEL, EMoM3F,G SNRM2, SCALE, SHIFT, SL. SM, SN, SMT1, TEST,
* ZTEST
LOGICAL WANTU,WANTV

C
C
C SET THE MAXIMUM NUMBER OF ITERATIONS.
C

MAXIT = 30
C
C DETERMINE WHAT IS TO BE COMPUTED.
C

WANTU = .FALSE.
WANTV = .FALSE.
JOBU = MOD(JOB,100)/10
NCU = N
IF (JOBU .GT. 1) NCU = MINO(NP)
IF (JOBU .NE. 0) WANTU = .TRUE.
IF (MOD(JOB,10) .NE. 0) WANTV = .TRUE.

C
C REDUCE X TO BIDIAGONAL FORM, STORING THE DIAGONAL ELEMENTS
C IN S AND THE SUPER-DIAGONAL ELEMENTS IN E.
C

INFO = 0
NCT = MINO(N-1,P)
NET = MAX0(0,MINO(P-2,N))
LU = MAXO(NCT,NRT)
IF (LU .LT. 1) GO TO 170
DO 160 L = 1, LU

LP1 = L + 1
IF (L .GT. NCT) GO TO 20

C
C COMPUTE THE TRANSFORMATION FOR THE L-TH COLUMN AND
C PLACE THE L-TH DIAGONAL IN S(L).
C

S(L) = SNRM2(N-L+1.X(LL),1)
IF (S(L) .EQ. 0.OEO) GO TO 10

IF (X(LoL) .NE. 0.OEO) S(L) = SIGN(S(L).X(L.L))
CALL SSCAL(N-L+1,1.OEO/S(L) ,X(LL) .1)
X(L,L) = 1.0EO + X(L,L)

10 CONTINUE
S(L) = -S(L)

20 CONTINUE
IF (P .LT. LP1) GO TO 50
DO 40 1 = LP1, P

IF (L .GT. NCT) GO TO 30
IF (S(L) .EQ. 0.OEO) GO TO 30

7

105

C
C APPLY THE TRANSFORMATION.
C

T - -SDOT(N-L+1.I(L.L)..I1(L.J).I)/I(L,L)
CALL SAXPY(N-L+l,T.I(L.L) ,,I(LJ) .1)

30 CONTINUE
C
C PLACE T E L-TI ROW OF I INTO E FOR IE
C SUBSEQUENT CALCULATION OF THE ROW TRANSFORMATION.
C 1(3) - I(L,3)

40 CONTINUE
50 CONTINUE

IF (.NOT.VANTU .01 L .GT. NCT) GO TO 70
C
C PLACE THE TRANSFORMATION IN U FOR SUBSEQUENT BACK
C MULTIPLICATION.
C

DO 60 I - L. N
U(IL) - X(IL)

60 CONTINUE
70 CONTINUE

IF (L .GT. NRT) GO TO 150
C
C COMPUTE THE L-79 ROW TRANSFORMATION AND PLACE TE
C L-Tf SUPER-DZAGONAL IN E(L).
C

E(L) - SN]M2(P-L,E(LP1) ,1)
IF (W(L) EQ. 0.0EO) GO TO 80

IF (E(LPl) .N . 0.0KE) E(L) - SIGN(E(L).E(LPl))
CALL SSCAL(P-L,1.OEO/E(L) ,E(LP1) 1)
E(LP1) - 1.0EO + E(LPI)

80 CONTINUE
EL) - -E(L)
IF (LP1 .GT. N .OR. E(L) .BQ. 0.030) GO TO 120

C
C APPLY THE TRANSFORMATION.
C

DO 90 I - LPI, N
WORK(l) - o.o0o

90 CONTINUE
DO 100 1 - LP1. P

CALL SAIPY(N-L.E(3) ,X(LP1,3) ,1WORK(LP1) ,1)
100 CONTINUE

DO 110 1 = LP1. P
CALL SAIPY(N-L,-E()/E(LP1) VORK(LP1) ,1,1(LP1,.J) ,1)

110 CONTINUE
120 CONTINUE

IF (.NOT.VANTV) GO TO 140
C
C PLACE TE 7RANSFORMATION IN V FOR SUBSBQUENT
C BACK MULTIPLICATION.
C

i j7

106

DO 130 I = LP1, P
V(IL) = E(I)

130 CONTINUE
140 CONTINUE
150 CONTINUE
160 CONTINUE
170 CONTINUE

C
C SET UP THE FINAL BIDIAGONAL MATRIX OR ORDER M.
C

M = MINO(P,N+l)
NCTP1 - NCT + 1
NRTP1 - NRT + 1
IF (NCT .LT. P) S(NCTP1) = X(NCTPI,NCTP1)
IF (N .LT. M) S(M) = O.OEO
IF (NRTP1 .LT. M) E(NRTP1) - X(NRTP1,M)
E(M) = 0.OEO

C
C IF REQUIRED, GENERATE U.
C

IF (.NOT.WANTU) GO TO 300
IF (NCU .LT. NCTP1) GO TO 200
DO 190 1 = NCTP1, NCU

DO 180 I = 1. N
U(I,3) = O.OEO

180 CONTINUE
U(I,) = 1.OEO

190 CONTINUE
200 CONTINUE

IF (NCT .LT. 1) GO TO 290
DO 280 LL = 1. NCT

L = NCT - LL + I
IF (S(L) .EQ. 0.OEO) GO TO 250

LP1 = L + 1
IF (NCU .LT. LP1) GO TO 220
DO 210 J = LP1, NCU

T = -SDOT(N-L+,U(L,L),1,U(L.),1)/U(LL)
CALL SAXPY(N-L+1.TU(L,L),1,U(L,J),1)

210 CONTINUE
220 CONTINUE

CALL SSCAL(N-L+1,-1.OEOU(L,L) ,1)
U(LL) = 1.OEO + U(LL)
L/l = L - 1
IF (LIi .LT. 1) GO TO 240
DO 230 I = 1. LI

U(IL) - O.OEO
230 CONTINUE
240 CONTINUE

GO 1O 270
250 CONTINUE

DO 260 I = 1, N
U(IL) - O.OEO

260 CONTINUE

b -I

1071

U(L.L) - 1.010
270 CONTINUE
280 CONTINUE
290 CONTDME
300 CONTINUE

C
C IF IT IS RQUIRED. GENERATE V.
C

IF (.NOT.WANITV) GO 70 350
DO 340 LL - 1D P

L - P - LL +1
LP1 - L + 1
IF (L .GOT. NRT) GO TO 320
IF (1(L) .B0. 0.090) 0 TO 320

DO 310 3 - LP1, P
T - -SDOT(P-LV(LP1,L) lV(LP1,J) ,1)/V(LP1,L)
CALL S PT(P-L,T,V(LPIL) .1,V(LP1,J) .1)

310 CO NTIUE
320 CONTINDE

DO 330 I - 1D P
V(IL) - 0.010

330 CONTINUE
V(L.L) - 1.010

340 CON'IUE
3S0 CONTINUE

C

C MAIN rTATION LOOP FOR TRB SINGULAR VALUES.
C

MM -

ITER - 0
360 CONTINUE

C
C QUIT IF ALL THE SINGULAR VALUES RAVE BEEN FOUND.
C
C ...EXIT

IF (M .EQ. 0) GO TO 620
C

C IF TOO MANY ITRATIONS HAVE BEEN PRFORMED. SET
C FLAG AND RETUIN.
C

IF (11 .LT. MAXIT) GO TO 370
INFO - I

C EXIT

G0 TO 620
370 CONTINUE

C
C THIS SECTION OF 7II PROGRAM INSPECTS FOR
C NEGLIGIBLE AEANTS IN MEE S AND E ARRAYS. ON
C COMPLETION TME VARIABLES [ASS AND L ARE SET AS FOLLOWS.
C

C [KASS - 1 IF S(M) AND K(L-1) ARE NEGLIGIBLE AND L.LT.M
C [ASK - 2 IF S(L) IS NBOLIGIBLE AND L.LT.M
C KASE - 3 IF R(L-1) IS NEGLIGIBLE. L.LT.M, AND

• - + _ . . _ , ... ,

108

C S(L) S(M) ARE NOT NEGLIGI]BLE (QR STEP).

C EASE - 4 IF E(M-1) IS NEGLIGIBLE (CONVERGENCE).

C
DO 390 LL = 1o M

L = M - LL

C ... EXIT
IF (L .EQ. 0) GO TO 400
TEST - ABS(S(L)) + ABS(S(L+I))
ZTEST = TEST + ABS(E(L))
IF (ZTEST .NE. TEST) GO TO 380

E(L) = 0.OEO
C...... EXIT

GO 10 400
380 CONTINUE
390 CONTINUE

400 CONTINUE
IF (L .NE. M - 1) GO TO 410

KASE = 4
GO TO 480

410 CONTINUE
LP1 = L + 1
NPI = M + 1
DO 430 LLS = LP1, MP1

LS = M - LLS + LP1

C ... EXIT
IF (LS .EQ. L) GO TO 440
TEST = O.0E0
IF (LS .NE. M) TEST = TEST + ABS(E(LS))
IF (LS .NE. L + 1) TEST = TEST + ABS(E(LS-1))
ZTEST = TEST + ABS(S(LS))
IF (ZTEST .NE. TEST) GO TO 420

S(LS) = 0.OEO
C...... EXIT

GO TO 440

420 CONTINUE
430 CONTINUE
440 CONTINUE

IF (LS .NE. L) GO TO 450

UASE = 3
GO TO 470

450 CONTINUE
IF (LS .NE. N) GO TO 460

UASE = 1
GO TO 470

460 CONTINUE
KASE = 2
L = LS

470 CONTINUE
480 CONTINUE

L=L+1
C
C PERFORM THE TASK INDICATED BY UASE.
C

V.

10

0O 70 (490.520,540,570), [WE
C
C DMFATE NEGLIGIBLE SM1.
C

490 CONTINUE

3(-) -0.030

DO 510 U - L, 11M
K - MI K + L
72 - 8(1
CALL SRWG(T1.F.CSm4)
8(1) - Ti
IF (K .R9. L) GO01TO 500

F - -SNOR(K-1)
1(1-1) - CS*3(K-1)

500 CONTINUE
IF (VAMTV) CALL SIOT(P.V(1,K).1.V(1,.E.1.CS.SN)

510 CONTINUE
G0 To 610

C
C SPLIT AfT NEGLIGIBLE S(L.
C

520 CONTINUE
F - E(L-1)
E(L-1) - 0.010
Do 530 K - L. M

Ti - s (1)
CALL SI01 (TI, .CS. SN)

F - -SNOE(K
3(M - C53(K)
IF (VhM1U) CALL SRtOT(NU(1.K).1.U(1,L-1),l.CS,31)

530 CONTINUE
GO0LTO 610

C
C 1331031 ONE 91 STEP.
C

540 CONTINUE
C
C CALCULATE InE SHIFT.
C

SCALE - A~nA(ABS(S(I)) ,BS(S(M-1)) ,ABS((1-1)) .ABS(8(L)).
* ARS(E(L))
SH - 5(K)/SCALE
SIM1 - 8(1-1)/SCALE
311 . 1(1-1) /SCALE
SL - 8(L/SCALE
3. - 1(L/SCALE
B a ((3111 + sX)*(SNN1 - SK) + 9=00*2)12.090
C - (UK*3h) $02
SKIFT - 0.030
IF (D B30. 0.030 .AND. C .S9. 0.030) GO TO 550

110

SHIFT =SQRT(B**2+C)
IF (B .LT. 0.OEO) SHIFT -- SHIFT
SHIFT - C/(B + SHIFT)

550 CONTINUE
F = (SL + SM)*(SL - 531) - SHIFT
G = SLOEL

C
C CHASE ZEROS.
C

10(1 = m1 1
DO 560 K =L, 30(1

CALL SROIG(F.G.CS.SN)
IF (K .NE. L) E([-1) -F
F = CSS()+ SN*E(K)
E(K= CS*E(K) - SN*S(K)
G = SN*S(K+l)
S(K+l) = CS*S(K+l)
IF (WANTV) CALL SROT(PV(1,K),l,V(1,K+1).l,CS,SN)
CALL SROTG(FGCS.SN)
SWK= F
F = CS*E(K) + SN*S(K+1)
S(K+l) = -SNOE(K) + CS*S(K+l)
G = SN*E(K+l)
E(K+1) = CS*E(K+1)
IF (WANTUl .AND. K .LT. N)

CALL SROT(NU(1,K),l,U(1.K+1),1.CS,SN)
560 CONTINUE

E(M-l) = F
ITER = ITER + 1

GO TO 610
C
C CONVERGENCE.
C

570 CONTINUE
C
C MAKE THE SINGULAR VALUE POSITIVE.
C

IF (S(L .GE. 0.OEO) GO ID 580
S(L - -S(L)
IF (VANTV) CALL SSCAL(P,-1.OEO.V(1,L),1)

580 CONTINUE
C
C ORDER THE SINGULAR VALUE.
C

590 IF (L .EQ. JO() GO ID 600
C ... EXIT

IF (S(L .GE. S(J,+l)) GO TO 600
T - S(L
S(L - S(L+1)
S(L+1) - T
IF (WANTV .AND. L .LT. P)

CALL SSWAP(P.V(1,Ll,V(1.L+1).1)
IF (WANTU .AND. L .LT. N)

111

S CALL SSWAP(N.U(1,L),1,U(1.L+).1)
L-L+1

GO TO 590
600 CONTINUE

ITBx - 0
M-N-1

610 CONTINUE
GO TO 360

620 CONTINUE
RETURN
END

REAL FUNCTION SNRM2 (N. SX, INCX)
INTEGER NEXT, N o INC
INTEGER NN . I, 7
REAL .1(1), CUTLO, CU79I. HITEST, SUN, INAX. ZERO, ONE
DATA ZERO. ONE /O.OEO, 1.OEO/

C
C EUCLIDEAN NORM OF THE N-VECTOR STORED IN SX() WITH STORAGE
C INCRmNT INCI.
C IF N .LE. 0 RETURN WITH RESULT - 0.
C IF N .GE. I THEN INCI MUST BE .GE. 1
C
C C.L.LAWSON. 1978 JAN 08
C
C FOUR PHASE MKTOD USING TWO BUILT-IN CONSTANTS MAT ARE
C HOPEFULLY APPLICABLE TO ALL MACHINES.
C CUTO - MAXIMUM OF SQRT(U/EPS) OVER ALL KNOWN MACHINES.
C CU79I - MINIIUM OF SQRT(V) OVER ALL KNOWN MACHINES.
C WHERE
C BPS - SMALLEST NO. SUCH T AT BPS + 1. .GT. 1.
C U - SMALLEST POSITIVE NO. (UNDERFLOW LIMIT)
C V - LARGEST NO. (OVERFLOW LIMIT)
C
C BRIEF OUTLINE OF ALGORITHM..
C
C PHASE 1 SCANS ZERO COMPONENTS.
C MOVE TO PEASE 2 WHEN A COMPONENT IS NONZERO AND .LE, CUILO
C MOVE TO PHASE 3 WHEN A COMPONENT IS .GT. CUIO
C MOVE TO PEASE 4 WHEN A COMPONENT IS .GE. CUT1I/M
C WHERE M - N FOR I() REAL AND N - 20N FOR COMPLEX.
C
C VALUES FOR CUTLO AND CUTHI..
C FROM THE ENVIRONMENTAL PARAMETERS LISTED IN TEE INSL CONVERTER
C DOCUMENT THE LIMITING VALUES ARE AS FOLLOWS..
C CULO. S.P. U/UPS - 200(-102) FOR HONEYWEL. CLOSE SECONDS ARE
C UNIVAC AND DEC AT 2**(-103)
C THUS CUMO - 200(-S1) - 4.44089E-16
C CU78I, S.P. V - 2*0127 FOR UNIVAC. HONEYWEL,, AND DEC.
C THUS CU7I - 200(63.5) - 1.30438E19
C CUMO, D.P. U/UPS - 200(-67) FOR HONEYWELL AND DEC.
C THUS CUILO - 200(-33.5) - 8.23181D-11
C CU78 , D.P. SAM AS S.P. CUTEI - 1.30438D19
C DATA CUTLO. CUlTI / 8.2321)-11. 1.304D19 I

112

C DATA CUTLO, CUTHI I 4.441E-16, 1.304E19 I
DATA CIUTLO, CUITHI I 4.441E-16, 1.304E19 /

C
IF(N .GT. 0) GO TO 10

SNRM2 = ZERO
GO TO 300

C
10 ASSIGN 30 TO NEXT

SUM = ZERO
NN = N * INCI

C BEGIN MAIN LOOP

I=1
20 GO T NEXT,(30, 50, 70, 110)
30 IF(ABS(SX(I)) .GT. CUITLO) GO TO 85

ASSIGN 50 TO NEXT
XMAX = ZERO

C
C PHASE 1. SUM IS ZERO
C

50 IF(SX(I) .EQ. ZERO) GO TO 200
IF(ABS(SX(I)) .GT. CUTLO) GO TO 85

C
C PREPARE FOR PHASE 2.

ASSIGN 70 TO NEXT
GO TO 105

C
C PREPARE FOR PHASE 4.
C

100 1 = J
ASSIGN 110 ID NEXT
SUM = (SUM / S(I)) / SI(M)

105 XMAX = ABS(SX(1))
GO TO 115

C
C PHASE 2. SUM IS SMALL.

C SCALE TO AVOID DESTRUCTIVE UNDERFLOW.
C

70 IF(ABS(SX(I)) .GT. CUTLO) GO TO 75
C
C COMMON CODE FOR PHASES 2 AND 4.
C IN PHASE 4 SUM IS LARGE. SCALE ID AVOID OVERFLOW.
C

110 IF(ABS(SX(I)) .LE. XMAX) GO ID 115
SUM = ONE + SUM.* (XMAX / S1(I))**2
MAX= ABS(SX(I))
GO TO 200

C
115 SUM = SUM + (SX(I)/XAX)**2

GO TO 200
C
C
C PREPARE FOR PHASE 3.
C

7

113

75 SUN - (SUN * XNA) * DXAl
C
C
C FOR REAL O1 D.P. SET HU1EST - CUHI/N
C FOR COMPLEX SET I[TEST - CUIII/(2*N)
C

85 HIlEST - CU7KI/FLOAT(N
C
C PHASE 3. SUN IS MID-RANGE. NO SCALING.
C

DO 95 1 -I.NN,INCX
IF(ABS(SX(l)) .GE. HITEST) GO TO 100

95 SUN " SUN + SX(J)*02
SNRM2 - SQRT(SUM)
GO TO 300

C
200 CONTINUE

I - I + INCI
IF (I .LE. NN) GO TO 20

C
C END OF MAIN LOOP.
C
C COMPUTE SQUARE ROOT AND ADJUST FOR SCALING.
C

SNlRN2 m Di0l 0 SQRT(SUN)
300 CONTINUE

SUBROUTINE SSCAL(N. SA, SX, INCX)
C
C SCALES A VECTOR BY A CONSTANT.
C USES UNROLLED LOOPS FOR INCREMENT EQUAL TO 1.
C JACX DONGARRA, LINPACK. 3/11178.
C

REAL S.SI(1)
INTEGER I.INC.,M.MP1.N.NINCX

C
IF (N.LE.0)R SETURIN
IF(INCZ.EQ.1)G0 70 20

C CODE FOR INCREMENT NOT EQUAL TO 1
C

NINCI - N*INCI
DO 10 1 1,NINC.INCZ

S(I) - SAOSZ(I)
10 CONTINUE

RETURN

C
C CODE FOR INCREMONT EQUAL TO 1
C
C
C QZAK-UP LOOP
C

114

20 M = MOD(N,5)
IF(M .EQ. 0) GO TO 40
DO 30 I = 1,M

SX(I) = SA*SX(I)
30 CONTINUE

IF(N .LT. 5) RETURN
40 NP1 = M + 1

DO 50 I = MP1,N,5
SX(I) = SA*SX(I)
SX(I + 1) = SA*SX(I + 1)
SX(I + 2) = SA*SX(I + 2)
SX(I + 3) = SA*SX(I + 3)
SX(I + 4) = SA*SX(I + 4)

50 CONTINUE
RETURN
END
REAL FUNCTION SDOT(N, SX, INCX, SY. INCY)

C
C FORMS THE DOT PRODUCT OF TWO VECTORS.
C USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.
C JACK DONGARRA, LINPACK, 3/11/78.
C

REAL SX(1l),SY(1),STEMP
INTEGER I,INCX,INCYIXIYM,MP1,N

C
STEMP = O.OEO
SDOT = O.OEO
IF(N.LE.O)RETURN
IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20

C
C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
C NOT EQUAL TO 1
C

IX = 1
IY = 1
IF(INCX.LT.O)IX = (-N+1)*INCX + 1
IF(INCY.LT.O)IY = (-N+1)*INCY + 1
DO 10 I = 1,N

STEMP = STEMP + SX(IX)*SY(IY)
IX = IX + INCX
IY = IY + INCY

10 CONTINUE
SDOT = STEMP
RETURN

C
C CODE FOR BOTH INCREMENTS EQUAL TO 1
C
C
C CLEAN-UP LOOP
C

20 M = XOD(N,5)
IF(N .EQ. 0) GO TO 40
DO 30 1 = 1,M

7

115

STEMP = STEMP + SX(I)*SY(I)
30 CONTINUE

IF(N .LT. 5) GO TO 60
40 MP1 = M + 1

DO 50 I = MP1,N.5
STENP = STEMP + SX(I)*SY(I) + SX(I + 1)*SY(I + 1) +
SX(I + 2)*SY(I + 2) + S(I + 3)*SY(I + 3) + SX(I + 4)*SY(I + 4)

50 CONTINUE
60 SDOT = STEMP

RETURN
END
SUBROUTINE SAXPY(N, SA, SX, INC. SY, INCY)

C
C CONSTANT TIMES A VECTOR PLUS A VECTOR.
C USES UNROLLED LOOP FOR INCREMENTS EQUAL TO ONF
C JACK DONGARRA, LINPACK, 3/11/78.
C

REAL SX(1),SY(1),SA
INTEGER IINCX,INCYIX,IYoM,MP1,N

C
IF(N.LE.0)RETURN
IF (SA .EQ. 0.0) RETURN
IF(INCX.EQ.i.AND.INCY.EQ.1)GO TO 20

C
C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREME'NTS
C NOT EQUAL TO 1
C

IY= 1
IF(INCX.LT.0)IX = (-N+1)'INCX + 1
IF(INCY.LT.0)IY = (-N+1)'INCY + 1
DO 10 I = 1,N

SY(IY) = SY(IY) + SA*SX(IX)
IX = IX + INCX
IY = IY + INCY

10 CONTINUE
RETURN

C
C CODE FOR BOTH INCREMENTS EQUAL TO 1
C
C
C CLEAN-UP LOOP
C

20 X = MOD(N,4)
IF(M .EQ. 0) GO TO 40
DO 30 I = 1,M

SY(I) = SY(I) + SA*SX(I)
30 CONTINUE

IF(N .LT. 4) RETURN
40 ItP1 = M + 1

DO 50 I = MP1.N.4
SY(I) = SY(I) + SA*SX(I)
SY(I + 1) - SY(I + 1) + SA*SX(I + 1)

7

116

SY(I + 2) = SY(I +2) + SAMSX(I + 2)
SY(I + 3) = SY(I + 3) +SA*SX(I + 3)

50 CONTINUE
RETURN
END
SUBROUTINE SROI'3(S-A,SB.C.S)

C
C CONSTRUCT GIVENS PLANE ROTATION.
C JACK DONGARRA, UNqPACK. 3/11/78.
C

REAL SA,SB.S,ROESCALE,RZ
C

ROE = SB
IF(ABS(SA) .GT. ABS(SB)) ROE SA
SCALE = ABS(SA) + ABS(SB)
IF(SCALE .NE. 0.0) GO TO 10

C = 1.0
S = 0.0
R = 0.0
GO TO 2 0

10 R = SCALE*SQRT((SAISCALE) 0 2 + (SB/SCALE)**2)
R = SIGN(1.0.ROE)*R
C= SA/R
S = SB/R

20 Z = 1.0
IF(ABS(SA) .GT. ABS(SB)) Z = S
IF(ABS(SB) .GE. ABS(SA) .AND. C .NE. 0.0)Z 1.0/C
SA = R
SB = Z
RETURN
END
SUBROUTINE SROT (NSX.INCXSY,INCY.C,S)

C
C APPLIES A PLANE ROTATION.
C JACK DONGARRA, UINPACK, 3/11/78.
C

REAL SX(1),SY(1).STEMP,C,S
INTEGER I, INCX, INCY. IX. IY. N

C
IF(N.LE.O)RETURN
IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20

C
C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS NOT EQUAL
C TO I
C

IX = 1
IY = 1
IF(INCX.LT.O)IX = (-N+1)*INCX + .1
IF(INCY.LT.0)IY = (-N+1)*INCY + 1
DO 10 1= 1,N

STEMP = C*SX(IX) + S*SY(IY)
SY(IY) = C*SY(IY) -S*SX(IX)

SX(IX) = STEMP

117

Il = IX + INCI
IY = IY + INCY

10 CONTINUE
RETURN

C
C CODE FOR BOTH INCREMENTS EQUAL TO 1

C
20 DO 30 1 - 1,N

STEMP = C*SX(I) + S*SY(I)
SY() C*SY(I) - SOSX(I)
SX(I) = STEMP

30 CONTINUE
RETURN
END
SUBROUTINE SSWAP (N,SX. INCX, SY, INCY)

C
C INTERCHANGES TWO VECTORS.
C USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO 1.
C JACK DONGARRA, LINPACK, 3/11/78.
C

REAL SX(1),SY(1),STEMP
INTEGER IoINCXINCY,IX.IYMMPl,N

C
IF(N.LE.O)RETURN
IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20

C
C CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS NOT EQUAL
C TO1
C

IX 1
IY = 1
IF(INCX.LT.O)IX = (-N+1)*INCX + 1
IF(INCY.LT.0)IY = (-N+1)*INCY + 1
DO 10 I = 1,N

STEMP = SX(IX)
SX(IX) = SY(IY)
SY(IY) = STEMP
IX = IX + INCI
IY = IY + INCY

10 CONTINUE
RETURN

C
C CODE FOR BOTH INCREMENTS EQUAL TO 1
C
C
C CLEAN-UP LOOP
C

20 M = MOD(N,3)
IF(M .EQ. 0) GO TO 40
DO 30 1 = 1,M

STEMP = SX(I)
SX(I) = SY(I)
SY(I) = STEMP

11e

30 CONTINUE
MF N .LT. 3) RETUIRN

40 MPI - M + 1
DO 50 1 - P1,N.3

STEMP =SI(I)
51(I) - SY(I
SY(I) - STEMP
STEMP = SZ(I + 1)
SICI + 1) = SY(I + 1)
SY(I + 1) = STEUP
STENP = SI(I + 2)
SX(1 + 2) - SY(I + 2)
SY(I + 2) - STENP

50 CONTINUE
RETURN

ENDd

119

REFERENCES

[1] E.C.Y. Tse, $. Medanic, and W.R. Perkins, "Generalized Bessenberg
Transformations for Reduced Order Modeling of Large Scale Systems,"

Int. 1. Control, Vol. 27, 1978, pp. 493-512.

[2] D. Lindner, W.R. Perkins, and 1. Medanic, "Chained Aggregation and
Three-Control-Component Design: A Geometric Analysis," Int. 1. Con-
trol, Vol. 35, 1982, pp. 621-636.

[3] E. Tse, W.R. Perkins, I. Medanic, and D. Lindner, "Hierarchical Control
of Large Scale Systems By Chained Aggregation," IFAC Symposium on La e
Scale Systems: Theory and Applications, Toulouse, France, 1980, pp.
203-210.

[4] D.K. Lindner and W.R. Perkins, "System Structural Decomposition By
Chained Aggregation," 1982 IEEE Int. Large Scale Systems Symposium,
Virginia Beach, VA.

[5] D. Lindner, J. Medanic, and W.R. Perkins, "Decomposition of a Class of
Nonlinear Systems via Chained Aggregation," 3rd IFAC/IFORS Symposium on
Lame Scale Systems, Warsaw, Poland, 1983.

[6] D.K. Lindner. "Chained Aggregation and Control System Design: A

Geometric Approach," Report R-966 (DC-56), Decision and Control Labora-
tory, University of Illinois. Urbana, Illinois, 1982.

[71 D.K. Lindner, J. Medanic, and W.R. Perkins, "Three Control Component
Design for Interconnected Systems," Submitted for publication.

[8] V.C. Klema and A.J. Laub, "The Singular Value Decomposition: Its Com-
putation and Some Applications," IEEE Trans. Automatic Control, Vol.
AC-25, 1980, pp. 164-176.

[9] G. Strang, Linear Algebra and Its Aplications, New York: Academic
Press, 1980.

[10] P.M. Van Dooren, "The Generalized Eigenstructure Problem in Linear Sys-
tem Theory," IEEE Trans. Automatic Control, Vol. AC-26, 1981, pp. 111-
129.

120

[11] G.W. Stewart. Introduction to Matrix Computations. New York: Academic
Press, 1973.

[12] C.C. Paige, "Properties of Numerical Algorithms Related to Computing
Controllability," IEEE Trans. Automatic Control, Vol. AC-26, 1981, pp.
130-138.

[13] W.N. Wonham, Linear Multivariable Theory A Geometric Approach, 2nd ed.,
New York: Springer, 1979.

[14] P.M. Van Dooren, A. Emami-Naeini, and L. Silverman, "Stable Extraction
of the Kronecker Structure of Pencils," in Proc. 17th IEEE Conf. on
Decision and Control, January 1979, pp. 521-524.

[15] N.J. Balas, "Trends in Large Space Structure Control Theory: Fondest
Hopes, Wildest Dreams," IEEE Trans. Automatic Control, Vol. AC-27,
1982, pp. 522-535.

[16] M. Balas and S. Gunter, "Attitude Stabilization of Large Flexible

Spacecraft," J. Guidance Control, vol. 4, 1981, pp. 561-564.

[17] M.J. Balas, "Feedback Control of Flexible Systems," IEEE Trans.
Automatic Control, Vol. AC-23, 1978, pp. 673-679.

[18] R. Gran and M. Rossi, "A Survey of the Large Structures Control Prob-
lem," in Proc. 18th IEEE Conf. on Decision and Control, Dec. 1979, pp.
1002-1007.

(19] R.J. Benhabib, "Discrete Large Space Structure Control System Design
Using Positivity," in Proc. 20th IEEE Conf. on Decision and Control,
Dec. 1981, pp. 715-724.

[20] S.M. Joshi and N.J. Groom, "Optimal Member Damper Controller Design for
Large Space Structures," J. Guidance Contr., vol. 3, 1980, pp. 378-380.

[21] P. Likins and H. Bouvier, "Attitude Control of Nonrigid Spacecraft,"
AIAA Aeronaut. Astronaut.. vol. 9, No. 5, 1971, pp. 64-71.

121

[22] S.M. Seltzer. "Dynamics and Control of Large Space Structures: An Over-
view." Journal Astronaut. Sciences, vol. 27, No. 2. 1979, pp. 95-101.

(23] R.I. Herzberg, K.F. Johansen, and R.C. Stroud. "Dynamics and Control of

Large Satellites." AIAA Aeronaut. Astronaut., vol. 16, No. 10. 1978,
pp. 35-39.

[24] E.J. Davison, "A Method for Simplifying Linear Dynamic Systems," IEEE
Trans. Automatic Control, Vol. AC-Il, 1966, pp. 93-101.

[25] E.C.Y. Tse. "Model Reduction and Decentralized Control of Large Scale
Systems Using Chained Aggregation," Report R-820, Decision and Control
Laboratory, University of Illinois, Urbana, Illinois, 1978.

126] G.W. Stewart, "Error and Perturbation Bounds for Subspaces Associated
with Certain Eigenvalue Problems," SIAM Review, Vol. 15, 1973, pp.
727-764.

[271 W.E. Hopkins, Jr., "Output Feedback Pole-Placement in the Design of

Compensators for Suboptimal Linear Quadratic Regulators," Report R-847,
Decision and Control Laboratory, University of Illinois. Urbana, Illi-
nois, 1979.

(281 W.E. Hopkins, Jr., 3. Medanic, and W.R. Perkins, "Output Feedback Pole
Placement in the Design of Suboptimal Linear Quadratic Regulators,"
Int. L. Control, Vol. 34, 1981. pp. 593-612.

(29] J. Medanic, "Design of Low Order Optimal Dynamic Regulators for Linear
Time-Invariant Systems," Conf. on Information Theory and Systems, Johns
Hopkins University, 1979, pp. 97-102.

1301 J. Medanic, "On Stabilization And Optimization By Output Feedback,"

Twlftk AilosL Conf. M_ Circuits. Systems and Computers. 1978. pp.
412-416.

[31] J.J. Dontarra. J.R. Bunch, C.B. Molaer, and G.W. Stewart. LINPACK Users'
Gide, SIAN. Philadelphia. 1979.

122

(32] S.P. Bingulac and N. Glukajic, "Computer Aided Design of Control System
On Mini Computer Using the L-A-S Language," presented at IFAC Symposiu
on Computer Aided Desian gl Multi'variable TechnologicAl Systems, Purdue
University, Indiana, Sept. 15-17, 1982.

IA

